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Semiclassical time evolution of the density matrix and tunneling
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The time dependent density matrix of a system with potential barrier is studied using path integrals. The
characterization of the initial state, which is assumed to be restricted to one side of the barrier, and the time
evolution of the density matrix lead to a threefold path integral which is evaluated in the semiclassical limit.
The semiclassical trajectories are found to move in the complex coordinate plane and barrier penetration only
arises due to fluctuations. Both the form of the semiclassical paths and the relevant fluctuations change
significantly as a function of temperature. The semiclassical analysis leads to a detailed picture of barrier
penetration in the real time domain and the changeover from thermal activation to quantum tunneling. Deep
tunneling is associated with quasizero modes in the fluctuation spectrum about the semiclassical orbits in the
long time limit. The connection between this real time description of tunneling and the standard imaginary time
instanton approach is established. Specific results are given for a double well potential and an Eckart barrier.

PACS numbe(s): 82.20.Db, 05.40-a, 03.65.Sq

[. INTRODUCTION ation times but small compared to decay times. This restricts
the approach to incoherent decay. Recent advances in the
Semiclassical theories have been found to be extremelgeal time description of barrier crossing based on flux-flux
powerful in understanding the dynamics of complex quan-<orrelations have been made, e.g., by Vettal. [10], who
tum mechanical systems. Special attention has been paid tocorporated analytically known dynamical factors into the
theories of tunneling processes as they occur in physicsate expressions. Quite recently, Pollak and co-workers
chemistry, and biology. Currently, a variety of quantum rate[11,12 were able to improve this idea by using a thermally
theories are in use explaining experimental findings for sevsymmetrized flux operator. A different way of including dy-
eral situations of interedtl]. Among them, roughly speak- namical information in an approximate way, favored by
ing, two different strategies can be distinguished. The firsMiller and co-workers, employs semiclassical initial value
class of approaches constructs the rate from purely thermeepresentation for the quantum propagdid8]. Although
dynamic considerations. An example is the bounce or instarguite successful at high to moderate temperatures, where the
ton method(also called InF method, originated by Langer quantum dynamics is governed by quasiclassical above-
[2] and extended by several authf8$ In essence, tunneling barrier processes, these approaches usually fail at low tem-
rates are derived from the imaginary time dynamics in theperatures where deep tunneling prevails. Finally, we mention
inverted potential. Other approaches of this tyae5] start  a kind of hybrid approach, the “real time” instanton theory
from periodic orbit theorny6] in imaginary time. Tractable [14], which includes tunneling in the real time propagator by
rate formulas are obtained with the centroid methdidead- means of instantaneous tunneling transitions. This method is
ing to a semiempirical separation of dynamical and thermatestricted to multistable systems in the low temperature limit
factors. These methods are computationally very efficienf15]. Hence, although the semiclassical theory of quantum
and have been applied successfully to systems as diverse @sneling is often regarded as well settled, this turns out to
tunneling centers in metals, Josephson junctions, or hydrdse true only for some limiting cases. What would be desir-
gen bonds, to name but a few. However, closer examinatioable is a semiclassical theory starting from first principles
reveals that these theories are based in one way or another tiat covers the entire range of temperatures as well as coher-
ad hoc assumptions that are not derived from first principlesent and incoherent tunneling processes.
For instance, the I method postulates a relation between In the realm of classical physics the theory of thermally
the decay rate and the imaginary part of the free energy. lactivated rates is rather firmly based. In a seminal peb@&r
fact, in some cases thermodynamic methods fail to predickramers determined thermal decay rates from the equation
the correct rate, e.g., they do not reproduce the energy diffusf motion for the phase space distribution function, i.e., from
sion limited decay for very weakly damped systems at finitethe real time dynamics of the system. A corresponding treat-
temperature. Moreover, these methods are designed to deent of tunneling in the semiclassical limit seems not to be
scribe incoherent decay only. possible, since all real time minimal action paths connecting
The second class of theories describes barrier crossing two sides of the barrier have energies larger than the barrier
terms of dynamical quantities. Perhaps most familiar isenergy. In the dynamical approaches discussed above these
Yamamoto’s rate formul@8], in essence a Kubo type for- trajectories do account for tunneling corrections to classical
mula relating the rate to a flux-flux correlation function. As rates[13,17], but it is usually argued18,19 that within a
shown in[9] it is exact only for scattering problems, while in semiclassical theory deep tunneling can only be described by
multi- or metastable systems one has to assume the existeniceorporating in addition imaginary time trajectories as they
of a plateau region for times long compared to typical relax-are used in thermodynamic methods. The lack of a first prin-
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ciples semiclassical theory of tunneling is intimately con- Imz
nected with a fundamental shortcoming of semiclassical real
time propagators derived from a single dominant path. Since q/(t-u)
tunneling arises from coherent interference of waves, a sat- -
isfactory semiclassical theory needs to capture this interfer- gi=q, (t) a5
ence pattern in terms of an appropriate family of real time 7.(0) 1 ' 7o(0)
paths rather than making ad hoc modifications of simple
semiclassical propagators. =g, @
Very recently, we have proposed a theory for transport -hg y

across a barrier based solely on the real time dynamics of the q(u)
density matrix and the semiclassical approximafi2@]. As

a notable feature, the method applies equally well to damped
and undamped systems and comprises in a unified way tn:%
entire range from thermally activated decay to low tempera-

ture tunneling. In appropriate limits the results of other meth-g, the right side of the barrier top, different initial prepara-

ods are recovered. Here, we explain the technicalities of the < |ead to the same long time behavior of the density
approach and evaluate the semiclassical propagator in deti|trix. Here we put explicitly

for two paradigmatic systems, namely, a double well poten-

tial and an Eckart barrier. Therein, we mainly concentrate on p(9,9",00=Z"'ps(q,.q9")0(—q)6(—q’) ®))

one-dimensional models. It turns out that the corresponding

theory already reveals the basic structure and that the gend@r convenience, with the proper normalization facZoand

alization to multidimensional systems, though tedious in dethe equilibrium density matrix

tail, is straightforward within the path integral formalism

TR P d ps(0,0')=(clexi — BH)|q"). ()
The article is organized as follows. Next, in Sec. Il, we

outline the general semiclassical theory, which is then usegx

in Sec. Il to derive as a simple example the stationary flu

across a parabolic barrier. The main part of the paper studi

the real time dynamics from high down to vanishing tem-

perature for the cases of a double well poter&ac. I\V) and

an Eckart barrietSec. \). Finally, in Sec. VI we summarize

the main features of the approach and present our concl

sions.

t Rez

FIG. 1. Loop of stationary imaginary and real time paths in the
mplex time plang=u+io.

Now, employing the path integral representation for
p(xitH/A) and exp(BH), respectively, the above inte-
rand in Eq.(1) can be written as a threefold path integral
here two real time pathg(u) andqg’(u) run in the interval
O<us<t from q; andq, to fixed end pointsy; andq; , re-
spectively, while the former coordinates are connected by an
imaginary time patfp(o) in the interval G 0<% 3 (see Fig.
Li). The real time paths describe the time evolution of the
system and the imaginary time path the initial state. Of
course, a more complete theory would explicitly include the
Il GENERAL THEORY coupling to a heat bath environment. In fact, the general
We consider a statistical ensemble of quantum mechanicheme of this approach in the case of damped systems has
cal particles of masdl moving in a barrier potentia¥(q) at ~ already been given elsewhd@l]. Much of the analysis pre-
inverse temperatur=1/ksT. We choose the coordinate ~ Sented below can in principle be extended to this situation;
so that the barrier top is located @0 and measure ener- Nowever, only a limited number of steps can be carried out
gies relative to the barrier energy by puttivg0)=0. The analytlcz_illy due to the more Compllcate_d form of the effec-
initial nonequilibrium state is assumed to be of the form oftive action functionals. Here, we limit ourselves to un-
an equilibrium state restricted to the left side of the barrierd@mped motion, which allows us to treat deep tunneling
Below, we will invoke the semiclassical approximation Without resorting to numerical methods. In this way, the
which is appropriate provided the barrier heightis by far ~ 9uiding concepts will becom,e more transparent. _
the largest energy scale in the system. The time evolution of 1€ density matrixp(q,q’,t) contains all information
the density matrixp(t) = exp(—iHt/%)p(0)exp{Ht/A) reads in about the nonequilibrium quantum process, in particular, the

coordinate representation average of the operatdt=[pd(q) + 6(q)p]/2M gives the
flux out of the metastable state, i.e., in coordinate represen-
tation
p(Qs,as .t)=f dagida/ G(ar,q)p(di,af ,0)G(as ,a)* .

1) J()=(2/2IM)[dp(ds, =0 ,1)/ 0 ]g,—0- &)
where the real time propagator is given by If the flux becomes quasistationady(t) = Jy within a certain
“plateau region” of time, the escape rate follows froh

G(a,q")=(alexp(—iHt/#)[q") @ =J.

While an exact solution of Eq1) for anharmonic barrier
and p(q;,q;,0) describes the initial state. In principle, for potentials is not possible, a high barrier naturally suggests a
our purpose any initial distribution that matches the equilib-semiclassical approximation. In the semiclassical limit the
rium on the left side and vanishes on the right side of theabove path integrals are dominated by minimal action paths
barrier top is appropriate. As long as the restricted equilib-determined by Hamilton’s equation of motion in a potential
rium state gives vanishing probability of finding the particle eitherV(q) (for the real time propagatorsr —V(q) (for the
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equilibrium density matrix Each path contributes with an paths has nothing to do with tunneling but rather is merely a
exponential factor containing its minimal action and a pref-consequence of the stationary phase approximation and holds
actor arising from the Gaussian fluctuations about the minialso for systems with no barrier at all. In fact, it turns out that
mal action paths. Specifically, the action in real time reads the complex semiclassical real time trajectories used here
t never cross the barrier top, in contrast to paths emerging
"N . from ad hoc complexification procedures occasionally
S@.a)= jodu[Mq f2=V(a)] ©) adopted to describe barrier penetratj@g].
Starting from the steepest descent conditicily and ex-
while its imaginary time version, the so-called Euclidean acploiting Hamilton-Jacobi mechanics, one immediately de-
tion, is given by rives

Sa.a)= [ dotmgz+via) @ pL(0)=iPx(hB) Py0)=iPx0), E—E'=E. (12

Here, ps(u)[ ps(u)] is the momentum of the real time path
Thus, in Gaussian semiclassics the propaga@ois approxi-  q(u)[q’(u)] with energy E[E’] connecting gJq.] and
mated as aslas]; accordingly,ps(o) denotes the momentum of the
i - imaginary time patfgis(c) running fromg, to gs with Eu-
G(a.9)= > VA(q,q’)ex%%S(q,q’)—igv) (8)  clidean energyE=—pZ/2M +V(q) (see Fig. ). Equation
cl.paths (12) can also be expressed d&/dt=0 with the solution
where A(q,q')=[—d°S(q,q')/dqdq’ ]/2wi# and v is the —
Maslov index. Throughout this paper we also use an equiva- %(qy,d¢|9s,0s) = S(ds,f). (13

lent representation of the prefactor, namely, .
P P y Hence along the loop of steepest descent paths the full action

iM [ . PW(q,q9")) "t is just given by the equilibrium action and is thus indepen-
A(q,q9")= m(Q(O)Q(t)T) (9 dent of time. Differentiating Eq(13) with respect tay; ,q; ,
one finds

whereW(q,q') =9 dq’p=S(q,q’) + Et is the short action. i P
The corr(equoLdinqg agpl:oxir&gt?or: to the equilibrium density Ps(t)=ipo(fiB),  Ps(t)=ipo(0), (14
matrix (4) follows by formal analyti_c continuation — wherePy() is now the momentum of the imaginary time
—ifpB, i.e., by replacingS(q,q’) by iS(q,q’) in Eq. (8)  pathqe(c) connectingg; with g; in imaginary time#.
with v=0. As a result, the integrand in E() is completely g path has Euclidean ener@y that depends on;, g ,
determined by classical mechanics in real and imagina”éndhﬂ but not ont. Hence, we first deduce that the energies
time, respectively, and dominated by an action factor in Eq. (12) are given byEf’ which implies energy and mo-

exd —3(qy.afai ) YA —im(v—v')/2] mentum conservation throughout the loop in Fig. 1. Sec-
ondly, we arrive at the remarkable result that the sequence of
with time dependent stationary phase poig&)[ g ()] is itself
_ a minimal action path starting gt(0)=q:[q<(0)=q; ] with
2(C]f !qfl|qi aQi,): _iS(Qf ’Qi)""s(qi aqi,)"'iS(Qf, vqi,)- energyEf i
(10 To complete the ordinary integrations in Ed) over the
With the approximate integrand at hand, it is consistent td"ti@ coordma&esqi,,qi’ we transform to fluctuationg=g
evaluate the ordinary integrations in E@) in stationary —ds @ndy’=q; —qg about the stationary phase points. An
phase. The stationary phase points are determined by min@xpansion of the full actio10) for fixed end pointss gy
mizing 3 with respect to the initial coordinateg,q/ , i.e., around the stationary phase points up to second order leads
to 3(qr,azla;,af) =S(as,a) + 62 @(y,y") with
9% 3 3 o 11 .
il (q, ap il (g, a1y 6‘2>2(y,y’)=E(y,y’)?z)(;’,) (15)

Since the end pointg; ,q; are fixed, the resulting stationary
phase pointsgs(t) and g.(t) are functions of time with
as(0)=aq;,9.(0)=q; . For finitet these roots are in general 2)_ S Ssy )
complex. The dominant imaginary time pail(o) connects 9= s

gs(t) with g¢(t), and the two real time patlgu) andg’(u)

connectgg(t) andqg(t) with g; andq; , respectively. Hence, is the matrix of second order derivatives3
the steepest descent approximation naturally provides a mag=d°%(q; ,q/)/9q?, etc., to be taken aj=q,, o =q; .

ping from the integration contour in the complex time plane Inserting Eq.(3) into Eq. (1), the integrand now reduces
onto a loop in the complex coordinate space connecting thto a product of Gaussian weight factors for deviations from
end points(Fig. 1). To avoid potential confusion with other the stationary phase points and an initial state faé{or g
methods, we emphasize that the appearance of complexy)d(—q.—y’) describing deviations from thermal equi-

where

(16)

ss’zs’s'
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librium att=0. Provided there is only one semiclassical path E=0
for each of the propagators, we obtain from EL.by virtue

of Egs.(13) and(15) the semiclassical time dependent den-
sity matrix in the form

1
p(dr,di V)= pp(ds,a1)9(ds 0y 1. 17

Here, deviations from equilibrium are described by a “form
factor”

, 1 (uas) u'(zag) |, (2472 . . .
g(gs,q; ,t)=— dz dz'e , (18 FIG. 2. Semiclassical patiidashed lingsin the complex plane
mJ e - near the parabolic barrier top. Shaded area contains relevant inter-
mediate coordinateg; g reached by fluctuations along arrows.
where
. Accordingly, the imaginary time dynamics runs in a har-
~[Def=! ] monic oscillator potential. For the minimal action pag{o)
u(Qs) = —ds 2h3gg connecting— q; with gs in time #8 one obtains
Sorgr Zey Qolo)= .Lsir{ wp(c—hp2)]. (22
u'(gs,2)=—0q +z > (19 sin(wph B12)
2h JDe=@]

This leads to the well-known equilibrium density matrix
with Def3@]=3 3 oo — (Ss¢)?. In deriving Eq.(17) we
invoked the fact that Hamilton-Jacobi mechanics implies
[23] pp(ds,—0s) =

VA7 82 sin(wpfi B)

Adr,99A(ds,aDAG@; a2 — p
{ hers®] } @a). (20 xexq —colwsfipl2) 55| (23

Note that for an initial equilibrium state, formallg(-)—1  with the relevant length scalé,= V#/2M w,,.

in Eq. (3) so thatu,u’ —« in Eq. (18), the form factor be- The real time dynamics follows simply. The classical real
comes 1 and the semiclassical density matrix is in fact statime pathsq(u) and q’(u) lead to the end pointg; and
tionary. If there is more than one classical path one has to- s, respectively, and hence obeyt)=q;, q'(t)=—q;.
sum in Eq.(17) over the contributions of all of them. Cer- On the other hand, the stationary phase condifit®) im-
tainly, the above formulagl8) and(19) are applicable only plies g(t)=iq(%8), ¢'(t)=igq(0) and we readily find
as long as the Gaussian semiclassical and stationary phageu)=q(#8—it+iu), i.e.,

approximations are valid, i.e., as long as fluctuations are suf-

ficiently small. This will be seen to be no longer the case for f ) o

low temperatures and/or very long times. How the classical q(u)= Ws'r{wb(ﬁmz—'t““)]'

paths in the complex plane can then be used as a skeleton for

an extended semiclassical/stationary phase calculation will q’'(u)=q(u+ihpB), O<us=t. (24)

be shown below.

In the remaining parts of the article we apply the general At time t the imaginary time patlyy(o) from —q; to gs
formalism to specific barrier potentials. Here, since we ards mapped onto the path(o)=q(iZB—ic),0<o<#hp,
particularly interested in the flux across the barrier, we reconnectingg:(t)=q’(0) with g¢(t) =q(0) (Fig. 2. The sta-
strict our investigation to nondiagonal end coordinaigs tionary phase points
and g;=—q; close to the barrier top. This does not mean

that we may constrain ourselves to study only local dynamics _ f . .
near the barrier top. Especially for lower temperatures, the Gs(t)= sSin(wph B12) sifwy(fBI2=11)],
nonequilibrium state in the barrier region is predominantly
governed by global properties of the potential. qi(t)=—qq(t)* (25)
IIl. PARABOLIC BARRIER are as functions of also classical paths moving away from

the barrier top asincreases—g(t) to the right andy/(t) to
~ The semiclassical and the stationary phase approximane |eft for q;>0. For longer timesw,t>1, the stationary
tions are always exact for quadratic potentials. Hence, as ghase points asymptotically tend toward the limiting trajec-
simple test case we consider first a parabolic barrier tories starting frong;=0, referred to as asymptotes hence-
o 2 5 forth. Similar to separatrices in classical phase space, these
V(g)=—3 Mwyg®. (21) asymptotes divide the complex plane into regions of negative
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and positive Euclidean energy: in the sectors including thedere,Z denotes an appropriate normalization constant which

real axis classical real time motion h&s<0 (but E<0 or  cannot be derived from the purely parabolic potential. This is
E>0) while in the remaining partE>0 However. in con- ot really a problem since realistic potentials always exhibit

trast to simple classical separatrices the asymptotes are te@évﬁ”e_t;(eelﬁi\(/eedn%c;trﬁgfil?;triglrr:Iwi??rzggetgztr;oiﬁ\gsrh; |§r]nu m
\?v?trhantjr:g d;ops?{;\?:n;nghﬁ;nﬁé t?:;f :Qigqur:ssgg:?it\?éi/s, iSNote that for the.quadratic potential the resyi9) an(_j(Sl)
found as are formally valid for all timeswyt>1. However, it was
shown in[24] that due to the lack of a well-behaved ground
T— wph B state it makes sense physically to use the parabolic barrier in
=— . (26)  T>T, only where w,i/kgT.=. For lower temperatures
2 wph B— 7, large quantum fluctuations render the Gaussian
approximation insufficient. Interestingly, the rate expression
(31) diverges at the lower temperatufg=T./2 only where

the parabolic density matrif23) ceases to exist.

a

Now, for the nonequilibrium preparatio(8) the initial
coordinatesy; ,g; are constrained to Rg},Re{q/}<0. Since
gs(t) andqg.(t) are on different sides of the barrigr(qy,
—0s,t) gains nonvanishing values only due to fluctuations
that effectively shiftg; away fromqg and across the barrier
top [see Eq.(18)]. For the parabolic barrier potential the A model well behaved for the entire range of tempera-
matrix elements in E(16) take the simple form tures with many applications is the bistable dynamics of a

particle moving in a double well potential,

IV. DOUBLE WELL POTENTIAL

3 ss=Mwp[cotl wphi B) —i coth(wpt)], Soe=32,

Mwﬁ ) q?
Mo V(Q)=———0°1- 5. (32
Seg=—— (27 2 20,
ss sin(wphi B)

Here, the barrier is located gt=0, the wells atg=*qj,,
so that the matrix ®) can easily be diagonalized. One finds and the barrier height i&,=—V(q,) = (M w2/4)g2. This

for the eigenvalues potential exhibits rich quantum dynamics, namely, incoher-
N 12 ent hopping between the wells over a broad range of tem-
t ol wnfiB) | cotl wihi B)2— — ) peratures that changes to coherent oscillationg fe10. Due
Moy, (wyh ) ey B) sinh(wpt)* to the complexity of the dynamics this is a highly nontrivial

(28) problem for the semiclassical approach, where the ratio

. o . S, /0, serves as the small parameter.
While, in principle, with Eqg.(18) we can now evaluate the

complete dynamics of the density matrix, we will concen-
trate here on the long time asymptotics of the nonequilibrium
state. Then, in the asymptotic regiapt>1 the eigenvalue The Euclidean mechanics in the inverted potentid(q)
A _ tends to zero aa _ =M w, exp(—wyt), reflecting the in-  can be solved exactly using Jacobian elliptic functif2is.
stability of the parabolic barrier. Hence, fluctuations aroundror the general solution one obtains

the stationary phase points with the least action increase oc-

cur in the direction of the eigenvector with eigenvalue. Go(ds,0)=Bsrlw(B)o—¢¢m], O<o<hp, (33
These fluctuations are of the form=|y;| exdi(a+ w,%B6)]
andy; =|y;|exp{«), so thatg; andg/ move simultaneously
along their asymptotes, meeting at the barrier tege Fig.
2). Now, inserting the matrix elemen{27) and the station-
ary phase point§25) into Eq.(19) and considering the limit
wpt>1, the relevant form factor turns out to be stationary,

A. Thermal equilibrium

where the boundary conditionsgy(qgs,0)=—qs and
go(as . B)=q; fix the amplitudeB and phasep; . Since the
potential is no longer purely quadratic—depending on
temperature—there may be several solutions, each of them
with another amplitude. In E¢33) the frequency is given by

2

B
1 [i2qQ - B)=w.\/1— 2 2_ ; 34
gﬂ(q’_q):\/_;f_m dxe ¥ 29 o(B)=wy n 7 Ez (34)

. 5 ) and the phase can be represented as an incomplete elliptic
with Q= /cot(wy#8/2)/(868). The corresponding constant integral

flux across the barrier is obtained from E¢S). and (17) as

as /B 1

h d9(ds, —ds) ¢f=F(qf/B|m)=f dx (35)
- ZImAr AU 2 (1—
In= 57377600 99 quo, (30 0 J(1=x3)(1-mxd)
_ with the so-called modulusm= %?/(1—%?). From the
which leads to the well-known result boundary conditiomy(% 8) = —0o(0) and the periodicity of
the Jacobian function, pr+ 2rK(m)|m]=(—1)"sr{z|m],
r=J,= @p 1 (31) r=1,2,3,... withK(m)=F(1m), the amplitudeB is deter-

A Zsinw,h Bl2) mined by
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w(B)AB=2rK(m)+[1+(—1)"]¢s. (36) all other paths withr>1 must also be taken into account.
This is due to the fact that the smaller action factors of these
Since K(m), ¢¢>0, for fixed wp% B real solutions to this latter paths are compensated for by zero mode phase factors
equation exist for only a finite number of integers0. from the corresponding fluctuation path integrals. Accord-
Let us briefly discuss the trajectori@g(qgs,o) as the ingly, all instanton contributions are summed up to vyield,
temperature is lowered. For high temperatures solutions of.g., for coordinates near the barrier top,
Eq. (36) exist only withr =0, corresponding to direct paths

from —q; to g;; particularly,gy(0,0)=0. As the tempera- — BIV(Q) + freo 2] W, I L BA
ture drops below the critical temperature. pp(dt,—0Qp)= 5a\/§e ALV(Ga) +heal2]=Walh cos >
T.=howy/7Kg, (37 % BA
+ cos?‘( %) sin?{ %) } . (40)
i.e., wph B>, solutions of Eq(36) with r=1 arise. Then, 26,

for ;=0 the barrier top can be joined to itself also by two — — )
nonlocal paths denoted . (0,0) oscillating in—V(q) to ~ Here, Wa=W(—0,,0d,) = —ABE+S(—d,,0a) is the short
the right and to the left with amplitude:q,, respectively, ~action for an instanton from-g, to q,. Further,

and energEﬁV(ql). With further decreasing temperature

g, grows and eventually saturatescgtfor T— 0. For finite A= wa& exp(— W, /%) (41)
gs the situation is rather similar: oscillating paths(q;,o) V278,

exist for allg;<qg,. These paths conneetq; with g; via a o .

turning point at=q, , thus differing fromq_. (0,0-) only by a denotes the WKB tunnel splitting with the well frequency
phase shift. The described scenario repeats in an analogo®a= wpv2 and 5621:71/2'\/' Waq -

way at all T=T./r, r=2,3,4,..., where is the number of

turning points. At zero temperature all these oscillating paths B. Dynamics of stationary phase points
reach+q, with the same energ§,=V(q,) and are then As in case of the parabolic barrier, the stationary real time
called instantons. paths can be directly inferred from the Euclidean dynamics

Now that all proper Euclidean trajectories are identified,att=0. From Eq.(33) and the stationary phase condition we
the semiclassical equilibrium state follows readily. For highhaye

temperature§>T, and end coordinateg; near the barrier
top, pg(ds, —as) basically coincides with the parabolic re- as(t)=Bs{ ¢i—iw(B)tjm], qi(t)=—qd(—1)" "],
sult Eq.(23) and anharmonic corrections are negligible. This (42)
situation changes drastically for temperatures figarThen, _ ) ) _ _
the bifurcation of new classical paths leads to large quantur@Nd do(o) is mapped at timet onto qg(o)=dolo
fluctuations and one has to go beyond the Gaussian approxi-i(— 1)"*'t] wherer follows from Eq.(36). In the follow-
mation of the fluctuation integral. Slightly beldty a caustic g we always formulate the semiclassical theory in terms of
appears fog;=q;. Since the region arourid, has already the real time pathsis,q¢ that “start” at the end pointsj
been studied in detail elsewhdi24], we omit this crossover —ds, respectively, and reach the initial pointg,q; after
region here and proceed with temperatures sufficiently belowimet. Since the end poinig; , — g¢ are fixed, while the most
T. that near the barrier top Gaussian semiclassics is agali¢levant initial coordinates depend on time, this backward
applicable. It turns out that the paths newly emerging fiear Vview of the dynamics is in fact more transparent. The real
are stable and domina;%(q,q’) forall T.>T>0, while the time trajectories now start from the end coordinates we are
unstable “high temperature” path and those springing up atnterested in and lead to the relevant initial coordinates that
lower T give negligible contributions. Since faf;<q, all ~ need to be integrated over with an integrand weighted ac-
pathsq..(qs ,o) differ only by a phase shift, one has for the cording to the initial deviations from equilibrium. The path
corresponding actions gs(t) runs in the complex coordinate plane as a periodic orbit
- o - with period t,(qs) =2K(1—m)/w(B) (Fig. 3. Within one
S.(qs,—q;)=S.(0,0=5_(0,0 (39 period it connects); with g; via a loop crossing the real axis
also after time t,(qs)/2 at the point qg.(qy)
so that =04 as,tp(dr)/2]=0q,. Thus gq4(t) stays always on the
_ _ same side of the barrier top and likewigg(t) on the other
(G, —dp)=2[A(ds,—ap)]*?exd —S.(0,0/#], side, so that the complex dynamics of the stationary phase
points starting fromqg; and —q;, respectively, reflects a
gs<ds- (39  bounded motion in either of the potential wells.

) ) Let us consider the stationary orbits as the temperature
Accordingly, the matrix elementz(qs,—qs) changes to @ decreases. For high temperatufies T, i.e.,r =0, eachq;
non-Gaussian distribution with a |OCE| minimum WZO dependent |00p Carries |ts own penmgqf) and energy
and two maxima afj;= *q,. TherebyS, (0,0)<0, so that E(qs). If g;#0, t, is small for T>T; and the real time
the probability p(0, 0) of finding the particle ag=0 is  dynamics corresponds to a fast bouncing back and forth in
substantially enhanced compared to its classical value.  the well. As the temperature is lowered the period grows

For T—O0 it is no longer sufficient to include only the while simultaneously the “width” of the loopq.(qys)
trajectories withr =1 in the semiclassical analysis, but rather shrinks. In the special casg=0 the real time path reduces
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Im{g} mated to occur as long as there is clear separation of time
scales between local barrier motion and global well oscilla-
tions, i.e., Kwuyt<wpty(qp). In particular, in the tempera-
ture domain where a plateau region exists, the Gaussian/

stationary phase approximations are valid and we can
actually calculate a rate. These approximations break down
m m when the stationary phase points move far from the barrier
R [ top and times of ordetr,(q,) become relevant for the barrier
w w Re{q) crossing. This range will be addressed in the next section.
For high temperature$>T, the typical length scalg,
can be identified withé,= V#/2M w,,. Thus, the separation

of time scales fails for very high temperatures whigd
=8V}, meaning that the thermal energy is of the same order
as or larger than the barrier height. With decreasing tempera-
ture t, grows so that forw,/i 8 of orde 1 a wide plateau
range appears Wwith,~In(d,/é,)/wy,. In the corresponding
density matrix anharmonic corrections are small, and we ob-
tain approximately the parabolic res(®9). To get the rate-
here, the proper normalization constantis taken as the
partition function of the harmonic well oscillator,

FIG. 3. Real time paths in the double well potential with wells at
+q, (dot9 for variousq; and T=0 (thin lines. The thick line
shows a typical fluctuation connecting orbits with different

to a constangg(0,t)=0. For temperature$<T, the situa-
tion changes with the appearance of new oscillating Euclid- 1
ean pathg.(q;,o) for gs<q;. In contrast to the high tem-
perature case all stationary phase point paths witiq;

then have the same perioth(dr)=tp(d1) and energy pence from Eq(30) one regains the known result

E(qs;) =E;, and differ only in their respective phases. Spe-

cial cases arg;=0 andqgs=q;: The pathgs(q;,t),qi—0 wp SiNMw,7ABI2) v

runs along the imaginary axis, while the orbif(qg,,t) de- = EWG b (45
generates to the usual well oscillation along the real axis.

These properties have a direct effect on the correspondingith the exponential Arrhenius factor and a characteritic
actions. One finds by employing Cauchy’s theorem that afteflependent prefactor that formally tendsug/ wy, in the clas-

-~ bV
2=y siniehipi) © (44

each period sical limit and describes the quantum enhancement of the
_ rate asT, is approached.
Sas(ar:ntp),q5]=As(q1.Np), 1], Gr=az. (43 At this point we have to be very careful: a detailed analy-

Hence, allgy(q; ,t) for g;<q, can be seen as phase shiftedSiS[21] of the full density matrixo(qgs,q; ,t), not only of its
copies'of tﬁe s’pecific real pati(qy,t), having the same nondiagonal part, reveals that the nonequilibrium effects de-

energy, period, and action increase during one period iScribed by the flux state are restricted to the barrier region
particuI'ar, o beriodp(ql) is large forT=T. wheng, is only in the presence of damping, consistent with the fact that

: finite temperature decay rates require coupling to a heat bath.
still small, t,(q4)~In(g,/q;)/wy, and drops down ta,(q,) . . .
p a p\Ma.
27l w, in the limit T— 0. In the absence of damping the full density matrix does not

become quasistationary and the real time trajectories explore

the strongly anharmonic range of the potential. Hence, an

evaluation of the rate based upon a supposedly quasistation-

ary flux statepy(qs;,—Qqs) for the undamped case corre-
Fort=0 the density matrix is given by the initial sta®. sponds to the transition state theory result. We refd21d

The semiclassical time evolution of this state follows by in-for a detailed discussion of this point.

serting the proper classical paths into ELj7). In the follow- As the temperature reach&s large quantum fluctuations

ing, we mainly focus on the long time dynamics and areoccur and the impact of an-harmonicities becomes substan-

especially interested in a plateau region where the time evdial. A detailed study of the bifurcation range aroumg is

C. Nonequilibrium dynamics for high and moderately low
temperatures

lution becomes quasistationary. quite tedious and was already presented26]. Thus, we
We start by addressing the question of when a plateaomit explicit results here and proceed with temperatures
region exists at all. Inserting the classical paths igfg; , =T, where for coordinates close to the barrier top a Gauss-

—qgs,t) in Eq. (19), a detailed analysis reveals that this func-ian approximation—then around the newly emerging paths
tion becomes stationary when the ratjg(t)/ps(t) reduces with amplitudes=*q,—is again appropriate. As discussed
to a constant. Since this will only occur within the parabolicabove all real time paths witQs<<q,; have now the same
barrier region, a least upper bound for a plateau region folescillation periodt,(q;)~In(g,/d,)/w,. One observes that
lows from the time interval within which a particle starting at even though they are influenced by the anharmonicity of the
a typical pointq, near the barrier top continues to experiencepotential via the Euclidean amplitudg, their time evolu-

a nearly parabolic potential. This leads te&t,(q,). The tion for T<T, is still dominated by parabolic properties.
lower bound is obvious: it is given by the transient time nearThen a somewhat lengthy algebra leads to the quasistation-
the top, i.e., by Lb,. Hence, a plateau region can be esti-ary density matrix
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pu(ds, — A =13 pa(dr, — ALy (ar, —ap)
+gh(ar,—an], (46)
whereg{™) describe the contributions from each of the two % 2
oscillating Euclidean paths. Note that due to symmetry in & E
ps(ds,—ds), these contributions are identical and just lead
to a factor of 2. In the temperature domain studied hegye,
can be gained analytically from E(6) as
2, 2|1 Re{q} Im{q}
S I [ (47) . . .
a1 V3 wgﬁzﬂz FIG. 4. Phase space orbits of complex real time paths in the

double well potential aT = 0. In the left picture the real part of the

Accordingly, one finds with some algebra for the thermalorbits is shown for trajectories starting with>0 near the barrier
' top; the dot indicates the well g, . In the right picture the corre-

distribution s )
sponding imaginary parts are depicted.
ps(0,0= damping theory. We note that in case of finite damping a
V27 85| sin( wyh B)| meaningful rate, then describing incoherent quantum tunnel-
5 ing, can be found for much lower temperatures. To investi-
wplt 05 w2 gate the time dependence ©fqs,—qs ,t) with no damping
X 125% B wgﬁ2,32 (48) in the limit of deep tunneling, we consider the cdse0 in

the next section.
The form factor now has two contributions of the fofdB)

and for k;= 4 In(q,)/d(wxhB)>1 the corresponding integra- D. Nonequilibrium dynamics for zero temperature

tion boundaries read . . . L
Any Gaussian semiclassical approximation to the real

time propagator is expected to break down for very low tem-
——, u'FNqgs,2) =k [UF () — Z]. peratures and very long times where quantum tunneling
4%@ comes into play. In fact, as yet no satisfactory semiclassical
(49 procedure has been found to describe deep tunneling in the
o . time domain. The crucial question raised is this: How can
Here, we employed the fact that nerthe derivativeX s is classical trajectories that e?cher oscillate in one of the poten-
dominated by #°S/dqf, which is proportional to tial wells, here with energE<0, or move over the barrier,
JE11d(wphi B)< k1. In this way, using the normalization here withE>0, produce exponentially small contributions to

+qq+i
u(gp)= A

(44), the result for the rate is the semiclassical propagator that originate from quantum
_ . states connecting the two wells under the barrier. Here, we

_ @y Sinhw,hB12) T present a mechanism that is based only upon the complex
T o /—2|sin(wbﬁ,8)| wpf B wbﬁlge ) plane mechanics discussed above and avoids any additional

(50)  ad hoc insertion of “barrier paths.” Since the complex plane
dynamics behaves as the usual classical real time mechanics,
This expression is valid for temperatur€s< T, where still  paths withE<O never cross the barrier. However, a full
k131, a region that can be estimatedTasomewhat larger semiclassical treatment needs to account for the dominant
thanT. /2. There are two interesting observations to mentionfluctuations about the semiclassical paths. Now, Ter T,
first, the exponentially large term in the thermal distributionthere is a whole family of looplike orbits in the complex
(48—a consequence of the new Euclidean paths—is exactlplane; all with the same energy, period, and action increase
canceled by a corresponding term that arises from the derivafter one period, differing from each other only by their re-
tive of the form factor. In this way, the rate is still dominated spective phases, i.e., by their crossing poiqts q; with the
by the characteristic “Arrhenius factor.” Second, in the limit real axis. It turns out that each time these orbits pass their
T—T,. the abovef, formula (45 and the belowr, result  end coordinatey; there are other trajectories of this family
(50) both approachl’ .= (w/27)sinh(w,hB/2)exppBV,);  arbitrarily close in phase spacsee Fig. 4 The role of quan-
however, the derivativesl'/dT are different. This disconti- tum mechanics then is to induce transitions between these
nuity in the slope of the temperature dependent rate is reorbits via small fluctuations. For sufficiently long times a
moved by the full semiclassical thedfg6], which takes the path starting at a certaigy near the barrier top may succes-
non-Gaussian fluctuations negyinto account and leads to a sively slip down to an orbit with another phagg, eventu-
smooth changeover between the rate form@&s and(50).  ally reach the stable regions arourddy,, and fluctuate in
With further decreasing temperature the amplitugie the long time limit between these regions. That this scenario
tends to saturate aj, so thatk;—0 and the above rate actually describes the low temperature coherent tunneling
expression is no longer applicable. Furthermore, the plateadiynamics has been discussed brieflyf20] and will be de-
region shrinks and eventually vanishes so that the assumpgeribed in some detail in the following.
tion of a quasistationary flux state becomes inadequate even For T=0 the amplitude of the Euclidean time paths is
in the sense of the transition state theory limit of a weakq,=q,. Thus, all stationary pathsjs(q;s,t),qs(qs,t) have



3458 JOACHIM ANKERHOLD AND HERMANN GRABERT PRE 61

energyE=V(q,) and periodt,=t,(q,) =27/ w,. Then the
Euclidadean actior$(q; ,q;) suppresses energy fluctuations ni— S
aroundE=V/(q,) exponentially, so that classical paths run- — > —
ning in timet from g;#qs andq;#q. to g and —q;, re-
spectively, i.e., withE#V(q,), are negligible. Further, @ )
studying the short action,W(q,q’)=fg'dquS(q,q’)
+ET, one finds according to Eg¢43) that after each period — il — »
W(qs,9¢) =W(d,,9,) =0. This result combined with the '
fluctuation prefactoffsee Eq.(9)] gives for the Gaussian © (d)
propagator after multiple round trips and for coordinaies
<0a FIG. 5. Diffusion of the crossing poim{™ of a fluctuation path
along the real axigthick lineg for various cases discussed in the
|Gne (95,0¢)|%°% ———>——>-, n=123.... (51) text. Dots indicate the wells at g, that are branch points for the
a nty(qz—ar) momenta; thin vertical lines the end coordinates af . Solid lines

N . . . refer to the forward and dotted ones to the backward propagator; a
Hence, the probability of returning to the starting point de-crossing of a dot is a TP.

creases as the number of periods increases. In contrast, in the
vicinity of the wells the Gaussian propagator coincides with

fche harmoqic prqpagator_. TO. be more precise, due to caustiqs: nt, with the imaginary time orbit connectingqs with g¢
in the semiclassics of this simple propagator anal/2, an  4¢4_ o Taking into account the phase fluctuations, however,

extended semiclassica}l analysis must be invoked leading Rrces the end point of the imaginary time path to move with
an Airy function; details of the procedure are well known -~ poing™ of the “real time path” also toward
a

[27] and of no interest here. The important point is that in the.l.he mapped imaginary time path aftert, therefore runs
barrier region the simple semiclassical return probability de- a

cays to zero for large times while in the well regions it re- from —g; to da. According fo Eq.(12) the additional
y 9 g amount of Euclidean action required for this deformation of
mains constant. Thus, we conclude that the dominant quan:

. ; . L the imaginary time path exactly counterbalantég&y, ,
tum fluctuations neglected in the Gaussian approximation t%o that tgrlle to¥al actic?E remainsyconstant which reffegtfs? the

the real time propagators are those that connect stationafy_.. . :
paths with the same energy but different phases, i.e., initiaf{atlonamy of2 along stationary paths. From qlosquthe
luctuation path spirals back tg; . However, sincey, is a

coordinatesy; . Effectively, these relevant fluctuations shift branching point of the momentum there are two channels:
d sllahtlyta:{vay from the’cltass:ccz'izll pa:;hs_(r?]f 0) to reacg the real time fluctuation path can maintain the direction of
another stationary patin(a; .t) (9 - Fig. 3. The COrrespona- -\ qiation or pass the turning poififP) q,, thus changing the
ing change in action after a period and for small deviations IXense of rotatiofict. Fig. 5a)]. In the former case, on the

simply way back fromq, to g; the fluctuation path crosses the real
/ - r_ axis with the same direction of momentum as on the way to
W(dr,01)~Ps(ar.0)(ar ~ ) 2 g., so that due toN"(g,q')=—-W*(q’,q) the path loses
This repeats at subsequent oscillations. Hence, a “fluctuatiofhe action W*(q,,qs) again and returns tog; with
path” can be characterized by its sequence of crossing pointd/(ds,qs) =0. In the latter case, momenta on the way back
with the real axis after each round trip, e.g., b{, k have opposite direction to those on the way forward so that
—1,...n, for t=nt, whereq®®=g; . Accordingly, a fluc- the path arrives ag; with action W(qy,ds) =W (da,s)
tuation path is not a classical path, i.e., it does not fulfill+ W™ (d,da) =2W"(qa,q5) and momentum- py(qy,0).
Newton’s equation of motion, but it can be seen as almost Moreover, a fluctuation path starting @t>0 can either
classical since it stays always in the close vicinity of a clasmove along the real axis to the right to reaghor move to
sical path. In the following we first explain the general struc-the left to arrive at-qj, . In the latter case, the crossing point
ture of the extended semiclassical approximation and later o™ diffuses across the barrier top so that the path initially

necting the end points of the two real time paths coincides at

turn to details of the calculation. spiraling aroundq, finally orbits around—q, with the
As an example, let us consider a fluctuation path startinggpposite sense of rotation. Accordingly, siné®(q,,0)
at g that spirals around, while the crossing poing™ with ~ =—W"(—0,,0), the real time action factor

the real axis diffuses close fp, and returns tay; in t>t,  exgdiW(*d,0)/%] grows or decreases exponentially for dif-
[see Fig. $a)]. According to Eq.(52) on the way tog, a  fusion to the right or to the left, respectively. In any case,

particular path gathers an additional actitt®(q,,q¢),  Near+g, the semiclassical propagator has to match onto the
which is imaginary due to imaginany(q,0) [see Eq(12)],  propagators in the harmonic wells. For the two lowest lying
where eigenstates that are relevant here, the matching procedure

was discussed in detail by Colemg28]. Correspondingly,
W+ . qad SMIV(d) -V 2 (53 these two states determine the relevant propagator in its
IW*(da, 00| = as AH2M[V(a)—V(aa) 1} (53 spectral representation. It turns out that a TP may occur only
if iIW(qgs,*=q,)<0. This has profound consequences on the
and the+ (—) sign stands for clockwiséanticlockwise ro-  extended semiclassical approximation:A relevant fluctua-
tation of the path in the complex plane. As long as the crosstion path fromq; to q; must reacht g, rotating clockwise to
ing pointg; does not diffuse, the imaginary time path con-have a TP. ThetW"(q,,q;) + W™ (ds,0a) = 2i|W(da,0s)]|
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and the Coz;esponl?ifng cont}rKibut|ior(1 to ﬂ)ﬁ ;()r?pa%ator has aghere we used the short action of an instarifég=W(q,,
exponentially small factor eXp-2)\W(q,,qs)|]. (i) A fluctua- .y \ith W.=Iw _ and denotes the semi-
tion path with more than one TP has to alterr_1ately visit Tpstlgsaiical groimc|1 sggtz Wg\éga| funcltﬁg(nqile the double well.

at =, thefreby changing its hsense thmtat'or? repr(]aatedlk)]/. The next order real time paths are those with one TP, i.e.,
In passing from one TP to the next the path gathers t €=1 »'=0andv=0.»'=1inE ; ;

r 2 . s " =1,v'= =0,v'= g.(54). This real time path
agtlon W0~ q"f\)_+W (.qa,O)—.V\/. (O,qa?+W (-—qa,O) gs(t) makes an excursion fromy via a TP atg, to —q, in
=i|W(da,—0a)|=iW, which coincides with the instanton the case where at=0 the end points-q; andg; are con-
action in A introduced in Eq(41). Hence, according td)  nected by an imaginary time paffi. , while it diffuses from
contributions from fluctuation paths with TPs do not pIayqf via a TP at-q, to g, in the case ofj. . Accordingly, one
any role for short times. For longer times, however, theygpserves that for an equilibrium initial preparation all contri-
become increasingly important, particularly since a fluctuaqytions cancel, e.g., the contribution correspondingyto
tion path may spend an arbitrary perlod of time at the_ TPsyith »=1, »'=0 cancels that corresponding @ with v
+0a Where V’(g,)=0 before leaving them. The detailed —q, ;' =1 In fact, it can be shown in the same way that for
analysis showsgsee below that fort>t, the phase space of an equilibrium initial state all terms in the sufB4) with
compensates for the exponentially small action factor. Morefinjte result follows due to the projection onto the left side of
over, at each TP a path gathers an additional Maslov indethe complex plane. Hence, both real time orbits have to end
given by a sum ovew,v’ taking into account the proper tg the above discussion we gain the following action factors:
order of TPs, i.e., For v=1, v'=0 one has exp-3W(0,0)|/% + q.0:/(452)]

from the forward and eXp-|W(q,,0)|/% + q.q:/(462)] from
_ the backward propagatofcf. Fig. 5c)], while v=0,
PAH=GLD= 2 puw(@0 =G0, BH g gives  exp-WIaOl/fi—au0r /(4501 and
’ ext] —3\W(d,,0)|/% —qa0¢/(453)] [cf. Fig. 5d)], respec-
tively. After expanding the integrand in E€l) around—q,
up to second order, the ordinary integrations over the initial
, coordinates are seen to be restricted to the harmonic range
ward propagator. Note that,»" only label the TPs of the around-— q, so that thed functions can be set to 1. Then, the

H !
tW(? real_ time paths. For eachv one has also FO sum over integrals effectively describe the stationary real time motion
all imaginary time paths connecting the end points of the reaJ)f the equilibrium well distributionp 4(— ., — ). Com-

time orbits. . L .
To evaluate the sum in E¢54) we start by analyzing the bining these findings yields

term withv=1"=0. As discussed above the diffusion ofthe  , (g, —q D=p1dds,—ds,t)+po(dr,— s, t)
real time orbits is then irrelevant and the imaginary time path

wherep, ,» denotes the contribution from relevant fluctua-
tion paths withv TPs in the forward an@’ TPs in the back-

has to run from—q; to q;. To lowest order imA [see Eq. =i8d(t)exy —2|W(da,—qa)|/7]

(40)] we have the two imaginary time patfs.(qs,o) . 5 o
emerging afl; that connect-q; with g; via TPs at+q,, X SiNN(G100a/285) P~ Ga» — )/ Z-
respectively. AtT=0 other solutions of the imaginary time (57

dynamics withr>1 [cf. Eq. (36)] just contain additional ) N

intermediate instantons, i.e., imaginary time trajectories contere ps(—da,—d,) includes a sum over multi-instanton

nectingq, with —q, or vice versa. For an equilibrium initial contributions of the imaginary time paths, resulting for

preparation(small) fluctuations about the stationary paths to- —0 N pg(—0a,—0da)/Z=VMwy/4mhi. Further, ®(t)ot

ward *q,, respectively, give identical contributions and we takes into account the phase space contribution from equiva-

thus recoverp,(ds,—dr)/Z [Eq. (40)] in the limit T—0 lent fluctuation paths connecting; via a TP atq, with

with the partition function —(a- These paths differ only in their “sojourn times” at the
TP q,. To evaluated we adopt the method outlined j29],

7=2 ex — BV(q,) — Bhw./2]cosh BAI2). (55 to which we also refer for further details, and write

t
For the nonequilibrium preparation, however, only fluctua- Gt(qa,—qa):JoduG[,u(qa,O)qS(O,u)Gu(O,—qa).
tions toward —q, contribute[Fig. 5b)]. In this way, one (58)

obtains for coordinateg; near the barrier top
Since fort>t, the sojourn time is exponentially large, one

1 1 can actually sum the intermediate time stepver the entire
—g)== lim = - time interval up to negligible corrections. To calculate the
Pod .~ ar) 2 5 Zpﬁ(qf ar) semiclassical propagators in the integrand of ExB) one
exploits the fact that a fluctuation path moving fras 0 to
4 — g, in time t>t, spends almost all the time orbiting in the
_ 2\ 2 a a
2o exfl —Wa/fi]cosd104/457) vicinity of q, thereby diffusing along the classical stationary
é paths(42) with g;=<q, toward the TP. Hence, the time de-
=1 o(as)? (56) pendence of the propagators is determined only by the
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asymptotic behavior of the fluctuation paths. Then, as algrand gives a contribution so thék(t) — d, saturates. We
ready derived in the previous paragraph, the actions turnoutote that for a system with dissipation, basically the same
to be independent of time up to exponentially small correc-mechanism, namely, an effective action depending on time
tions and their sum gives rise to the action factorvia damping induced correlations, may cause incoherent tun-
exd —|W(g,,—g)/%] in G(d.,—q,). For the prefactors one neling even aff=0.

uses the representatiof®), and exploits the fact that

Gs(0u) VA~ u(da,0)A,(0,— qa) depends fort>t, on time V. ECKART BARRIER
and temperature only through €xp(i8+it)w,/2], while its . . )
dependence on the intermediate time siép exponentially ~As another instructive example we analyze in the follow-
small. In this way, since both exponential factors are alreadyng the transport across a genuine scattering potential,
accounted for in Eq(57), we arrive at namely, the so-called Eckart barrier
(I)(t)zGt(qa,—qa)expﬂW(qa,—qa)l/ﬁ+(ﬁ,8+it)wa/2], VO
(59 V@)= coshig/Lg)?" 64
a/Lo)

which leads to . : . L .
Here,V, is the barrier height ant, the typical interaction

bod, range. We drop the conditiovi(q=0)=0 in this section so
} (60)  that energies are shifted By . In fact, the real time dynam-
\/Zéa ics in this potential is much simpler than in the double well:
particles steadily injected from a thermal reservoir to the left
oo of the barrier build up a flux across the barrier that is station-
contribution to Eq(54) as ary for all times after a certain transient time has elapsed.
TN Thus, the corresponding quantum dynamics is described by a
p1(Gr,—dr D =itA?sinh(qa01/25,)/(wada) (6 barrier transmissﬁon rat?a?‘or all tem)[;eratures. In a semiclgs—

where the tunnel splitting is specified in Eg). Likewise, ~Sical expansion we use/ 2MLgV, as the small parameter,
contributions from real time paths with more than one TPWhich demands high and broad barriers.

can be calculated where the proper order of TPs must be

taken into account. Eventually, only contributions with A. Thermal equilibrium and stationary phase points
i2k-1A2K k=1,2,..., survive and the time dependent density
matrix (54) for coordinates near the barrier top reads

d(t)=t

Combining this result with Eq(57) we derive the one-TP

The solution of Newton’s equation of motion for the Eck-
art barrier in imaginary time read80]

p(ds,— s ,t)=3 tho(qs,—qy)? Vo—E
TiA Sin(AUSINN G,01/282)(40,). do(ar,0)=Lg arcsinh( 0_ sifw(E)o— ¢f]) ,

E
(62) (65)

Hence, the initial stat¢3) develops an imaginary, time de-
pendent part from which the tunneling currébj is gained

as \/?
J(t)=A sin(At) (63) w(B)=wy \/ - (66)

0

where we introduced the energy dependent frequency

describing coherent tunneling between the wells. This showS;it, the barrier frequencw. = «/2V~/ML2. EneravE and
that a systematic semiclassical analysis of the real time dy- d ¥ 0 o gy

namics of the system also covers low temperature tunnelin%hase ¢¢ are determined by the boundary conditions
o o . ,0)=—qs andqy(qs,%B8)=0qs. Accordingly, employ-

We note that the tunnel splitting coincides exactly with the. o(d;,0)= - do(9r,718) =01 gy, employ

. ) ing one of these conditions to fiy;, the energy can be
result of the instanton approa¢kee Eq.(41)] where A is evaluated from
related to the action of an imaginary time path. Within the
real time description the “instanton dynamics” is replaced — ;
by the above-mentioned diffusion along the real axis in the o(B)ig=ra+[1+(—-1)]¢r, (67)
complex coordinate plane. ) . )

Before we conclude this section let us briefly sketch how!Vhere for given temperature real solutions exist only for a
the crossover from coherent decay to incoherent tunnelin§nité number of integers=0. Accordingly, this nonlinear
occurs within the present formalism as the temperature i§9uation gives the amplitude of the semiclassical path. As a
raised; details of the calculation will be presented elsewherdunction of temperature the solutio85) and(67) resemble

For finite temperatured>0 the energy of the stationary th0Se in the inverted double well potentiaf. Sec. IVA). In
paths is|El| —IV(q,)|<|V(q.)| so that the TPs of the fluc- particular, forT<T, all paths withr =1 again have the same

tuation pathsy;<q, are shifted toward the barrier top. Ac- energy independent ajr,
cordingly, V'(q;)#0 and the corresponding actions in Eq. 5
(58) are no longer independent of time. Thus, the time inter- Elzv(ql): %
val t>t, may eventually exceed the region where the inte- wph B

Vo (68)
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Im{q/Ly} rangeT<T, and for end coordinateg;<q; the oscillating
Euclidean paths determine the energy independef; Gfs
E=E, [see Eq(68)] with the frequencyw;= w(E;). Hence,
in T<T,. all paths starting in the barrier rangeg;&Lg)
nearly coincide asymptoticallysee also Fig. 6 for wpt
4 >1:

3n/2

0s(9s,t)~qs+LoIn[sinh(w4t) [ +iL o7/2. (71

Orbits withg;>L, also come close td_y7/2 but on a larger
time scale, e.g., fog; close toq,>L, on the scale 1.
Since In{qi}— —iLym/2 for larget we conclude that the real
time stationary phase dynamics fox T, is restricted to the
strip [ —iLgm/2,iLy7/2] in the complex plandFig. 6). To
Re{q/L, complete this discussion we address the special cgses

a/Lo} . .
=(, andqg;=0, respectively. In the former case the motion
starts with zero momentum and takes place along the real
axis, asymptotically ¢,t>1) as

ds(t,g1)~0;+ Lowat. (72
FIG. 6. Real time paths in the complex plane for the Eckart _ _ o
barrier. Solid lines show orbits fof<T,, dotted lines orbits for In the latter case the orbit can only be defined as the limiting

T>T,. trajectory of q4(t,q;) for q;—0, thus running along the
imaginary axis fromg=0 to q=iLy7/2 and afterward par-

with amplitudes+q; and the same frequenay;=w(E;).  allel to the real axis.

An important difference from the double well case, however, The complex plane dynamics described depends essen-

is that the amplitudey; of the paths here grows without any tially on the analytic properties of the potenti{q). Inter-

limit as T—0, i.e.. El—>0 Hence, the equilibrium density estingly, in the case of the Eckart barrier one has for complex

matricesp (g, —qy) differ qualitatively in the deep tunnel- 9 the periodicity

ing regime. While for the double well potential near0 V(A =V(g+iLn N inteqer 73
contributions from all multi-instanton paths must be summed (@=V(q o), ger. (73
up [see Eq.(40)], here, the density matrix is dominated by Hence, the complex plane falls into strip§(2n

/2

-7i/2

the oscillating paths newly emerging aroulg= wpfi/lkgm  —1)iLy7/2,(2n+1)iLom/2], n integer, parallel to the real
for all T<T.. For further details of the Euclidean semiclas- axis, each of which has identical classical mechanics and
sics we refer td30]. corresponding stationary phase path¢q:;+iLnm,t). As
Now, for the stationary phase points we obtain shown above, fol <T, the real time dynamics starting from
the real axis at=0 reaches asymptotically the boundaries of
_ Vo—E o the stripn=0, while in the rangd > T it does not. This has
ds(t) =L arcsinh ——sin¢s—iw(E)t] |, crucial impact on the semiclassical analysis for low tempera-
E tures as will be discussed in Sec. V C.
Gs()=—as(~ 1)r+1t]' (69) B. Stationary flux for high and moderately low temperatures
which are connected by the Euclidean pagl{o)=q¢[o The systems starts from an initial state where the thermal

+i(—1)""1t]. Starting aiy[ — q¢] the pathgg(t)[g4(t)] de- equilibrium is restricted to the left of the barrier, thus extend-
scribes for large times an almost free motion parallel to théng to q— —c. Accordingly, after a certain transient time
real axis in accordance with the asymptotically vanishinghas elapsed the flux across the barrier remains stationary for-
interactionV(q)—0 asq— . The energy ofj,(t) is con-  ever. Since with increasing time the stationary phase points
trolled by temperature where qualitatively the two rangles Move away from the barrier top, for large times fluctuations
>T. and T<T, must be distinguished. In the first cage, ©f the order ofl, or larger are needed to shi into the

depends omy; and forg,>0 we find asymptotically, i.e., for region R€q}<0, thus rendering the Gaussian stationary
w(pE)t>1 i ai ymp y phase approximation insufficient. Yet we can use #d) to

gainJ; as long as the flux becomes stationary on a time scale
sinh(q; /L) within which gg remains smaller thah,.
a<(as,t) ~L, arcsiny{r;l(;z)ew“f)t} In the rangeT > T, and forg; near the barrier top one has
wph B E~V, so thatw(E)~w,. Thus, the density matrip(q;,
) T wyhB —(Qs,t) tends to stationarity on the scalewl/while gg(t)
Tkl 575 reachesL, on the much longer time scale[W}/(E—Vy)]
only. We thus regain within this time window approximately
so that forT>T, all stationary paths are restricted to the the parabolic resulf29) in the semiclassical limit—larg¥,,
stripi(Lo/2)[ — (77— wph B), (77— wpfi B)] (cf. Fig. 6). Inthe  andLy—where anharmonicities are negligibly small. Corre-

: (70
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spondingly, the rate reads as specified in B1) with wy,
=2Vy/M LOZ.
For temperature§ <T, the transient time range grows
according to kb, =%/, while the upper bound for the = -
validity of the Gaussian approximation eventually shrinks to ;6 g
l/w, . Hence, while one can no longer use the local barrier 8
dynamics for temperatureB<T,, in a region sufficiently
close toT . a rate calculation along the lines described in Sec.
IV C still makes sense. Accordingly, for<T, the density
matrix is obtained as in Eq46) with the amplitudeq; de- 0 Lo/2 Lom
rived from Eq.(67) for r=1 as Re{q} Im{q}
W FIG. 7. Phase space orbits of complex real time paths in the
q1=L, arcsin?‘(—) . (74) Eckart barrier potential af<T.. In the left picture the real part of
m the orbits is shown for trajectories starting with>0 near the

barrier top. In the right picture the corresponding imaginary parts

This way, one gets the rate are depicted; the dotted line separates the strip® andn=1.
Wy V(wph B)*—m° ( M )1/2 % (q—Q')z)
= exp(— BV Gi(0,9)=| 53— expgiM—7— 76
177 arcsin (o BlmP=1] L AYo) (99 ={ 277 2%t (76)
(75

so that for fixedg—q’ and long times the transition prob-
for temperatures belowW . but still aboveT./2. For even ability decreases aG,(q,q’)|?<1/ [cf. Eq. (51)]. Corre-
lower temperatures higher order terms in the expansiospondingly, two different types of fluctuation can be identi-
around the stationary phase points g, must be taken into  fied: one type of fluctuation connects paﬂq;s(q’
account. In the following section we show that fbibelow  +j| jnz,t) and qy(q;+iLona,t) within the same strip,
T¢/2 the rate is dominated by quantum tunneling which reyhile the other type of fluctuation switches between paths
quires an e>.<ten.ded semiclassicgl analysis. Th_u_s,.a higher Qo (gi+iLona,t) and g¢(qf+iLo(n+1)w,t) in adjacent
der expansion is needed only in the close vicinityTef2  strips. The first type is already accounted for in the simple
where the changeover from the thermal to the quantum ratgemiclassical approximation to the real time propagator,
occurs. since these fluctuations never leave the sirip0 and stay in

the close vicinity of the asymptotigy(qs,t). In contrast, the

C. Stationary flux for low temperatures second type is relevant beyond Gaussian semiclassics since it

The breakdown of the Gaussian stationary phase approxF—auses 'afge QeV|at|ons and aIIovys a it 1) by SUbS,e'
uently diffusing to another strip to reach a pajk(q;

mation for lower temperatures indicates also a breakdown of ) > , :
the simple semiclassical approximation to the real time' iLont) with g¢ far from q; andn large. Interestingly,
propagators for large times. In fact, one needs to carefullyhis second kind of fluctuation does not exist for-T
analyze the quantum fluctuations around the classical pattéhere asymptotically there is always a gam,/ 8 between
to capture tunneling processes. In the following we procee®@ths in adjacent stripsee Fig. 6 . _
in the spirit of Sec. IV D and search for relevant phase fluc- AS an example, let us consider a trajectqg(qs ,t) with
tuations. g; close to the barrier top fol <T; and timest>1/w,
We begin by reca”ing that in the rang'bg'rc and for >1/(1)b In th|S I|m|t the Ol’bit runs for(l)bt>l along the
coordinatesg;<q; the classical mechanics in the complex Poundaryil g7r/2 of the stripn=0, where fluctuations of the
plane takes place in strips[(2n—1)iLym/2,(2n  Second class bridge the tiny gap to an odaitqs +iL o7,t)
+1)iLom/2], n integer, parallel to the real axis. One thus with a differentq; in the stripn=1. This trajectory passes
has families of classical pathsf. Fig. 6) all with the same q; +iL 7, and exploiting the periodicity 0¥(q) the corre-

energyE;, that start at— — to the far right on the lines sponding change in actiow(qs,qy) is shown to read as in
(2n—1)iLom/2, run close together with almost vanishing Ed. (52). Obviously, the described fluctuations always lead
momentum— ML o, toward the barrier top, passtat0 the ~ from an outgoing to an ingoing orbit, thereby increasing the
coordinatesy; +inLy, and then leave again to the far right Strip number, which in turn requires a momentum fluctuation
moving close together with momentuMLw; asymptoti-  Of order 2q4(t)|=2MLyw;. Estimating typical momentum
cally along the lines (8+1)iLom/2. Accordingly, for T fluctuations agi/L, one rederives fronk/Lo>MLow, the
—0 in classical phase spatsee Fig. 7 orbits with different ~ condition T<T. so that at low temperatures these fluctua-
phases¢;, i.e., differentqs, but from the same or from tions will indeed occur. By the same procedure the path
adjacent strips lie arbitrarily close to each other in theds(ds+ilom,t) can be linked to a path(qf+iLo2,t),
asymptotic range wherg/(q)|—0. The effect of quantum and so forth. As in case of the double well potential, a “fluc-
fluctuations then is to link these paths, which reflects thguation path” is characterized by its sequence of crossing
asymptotically free particle diffusion in the Eckart potential. points g +iLokm, k=0,1,2...,n[q™W=q;], with the

In simple semiclassical approximation one has asymptotiinesilL ok, i.e., the copies of the real axis in the strips
cally the propagator Accordingly, for very long timest>1/w, the point g™
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+iLgn7 moves with increasing along the positive imagi- half-plane where it eventually crossesy; +iL on,n large,
nary axis while simultaneouslg™ can slide down the real !0 run along the linéL on and reacly; +iL on in the far
axis and away from the barrier top to reach the proximity of/€ft. For the segment of the fluctuation path framvia a
q;. From close tay; relevant fluctuation paths travergeas 1P 1@ —0i+ilonm, the corresponding action factor is
a turning point—g, is a branch point for the momentum— €XH—3\W(ay,0)|/% + wpMLog;/%]. Due to the periodicity
and return via the described scenariogpin the stripk (73 of the potential, the segment fromq, +iLonw to q;
=0, but crossing the lined ok with opposite direction of +iLoN,Gi<—0dy, can just be treated as the corresponding
momentum as on the way forward. The total change in actio@n€ along the real axis; for very large timegt>1, i.e,

is imaginary and given by W(q;,q;)=W(q,,q;) |l>0d1 according to Eq(72), we then get the action factor
=2W(q,,q¢),n arbitrary but large, where fag; close to the ex —iMg?/24t]. Hence, the corresponding relevant real

top time propagator reads
K Gi(qs,0i) = —iVA(qs,0;
|W(ql,qf)|:fO| ldq{ZM[V(q)—V(ql)]}llz «(Qt,0) (9r,9) 2
f 3|W(q,0 ML :
iy Xexp(— | (21 )| L@ ’ Y qu .
0 _—
=i —wpML . 7

In a similar way, the sequence gf" of a fluctuation path Similarly, the propagator from-q; directly toq/ +iL g is
starting atq; can move directly toward the barrier top, dif- gained. The crucial point is now that for the integral in Eq.
fuse across the barrier to gnter the left half-plane_ of the CO0Me1) there are no longer isolated stationary phase points but
plex plane, and end up in the asymptotic regiondRe:  rather alig; g/ on the lineil ona and to the far left of the
—. Since in leading order the semiclassical propagator hagayrier top make the integrand for very large times station-
asymptotically to match onto the free propagaf®®), a TP a1y The ordinary integrals in Eq1) can thus be seen as

may occur only ifiW(qr,+q,)<0. Hence, what we dis- s over stationary phase poinfsqg, whereby their dis-
cussed in Sec. IV [)see the paragraph above EB4)] can 3¢ s weighted by the asymptotic thermal distribution, i.e.,
be transferred directly to the situation here and the densit

¥ leading order the free particle equilibrium density matrix
matrix can be cast into the same form as in Ef}). In a 9 P q y
notable difference from the double well potential, however, M
the TPqg, here is not an isolated extremum of the potential, pﬁ(q,q’):(m
meaning that each TP—for Euclidean and real time fluctua-
tion paths as well—is not related to an additional phase fac- , , ,
tor for equivalent paths. Accordmg'ly, for T—0 one haspg(q;,qi)— 6(qi—q;) so

After having elucidated the general structure of the semifhat contributions fronm;#q; are caused by thermal ﬂ,UC'

classical density matrix we now turn to the explicit calcula-tuations at elevated temperatures. Further, for lajge;
tion of the sum(54) and begin with the termp,(q;,  and large times the prefactofs(q;,q;) and A'(—qs,q;),
—qs,t). This matrix element follows by the same argumentsrespectively, are independent gf,q; , thus allowing us to
as given in Sec. IVD. Since the equilibrium density matrix carry out theq;,q; integrals over the exponentials only.
for the Eckart barrier is dominated by the oscillating pathsThen, using—q, as an upper bound for the asymptotic co-
newly emerging around; for all lower temperatures, all ordinate range it turns out that far;t>1 the result for the
further contributions from Euclidian trajectories witk- 1 in  integrals in leading order isrAt/M. Now, combining all
Eq. (67) are negligible. Accordingly, we find for coordinates factors we finally obtain the time independent density
around the barrier top

1/2 M _ ~’\2
) ex —%22—)) (80

p1(ds,—qs)= lim py o(ds,— s ,t) + po1(ds, —ds,t)
p0,0(qf v_qf) w>1

_}"ml I o 4wV, |2
2T<Tczpﬁ Qs, — Qs _Z_LO ﬁwb(wth)S

1 Vo X sinh(2w,M Lo /71)e 4War0l/i (1)

( ) 1/2
- 232 2 2 2 2
Lol wph Al (wph B) (1= Gi/Lo) — 7] where|W(q;,0)| follows from Eq.(77). Employing the same
A T procedure, contributions in the sui®4) from real time paths
xexr{ - w—bﬁ(Z— wbﬁ,B) : (78 with more than one TP can be derived; however, they con-
tain additional action factors and are thus exponentially
Note that in contrast to bounded systems the above densi§mall compared tg,. Hence, the stationary semiclassical
matrix remains temperature dependent evenTaT, . ensity matrix for low temperatures and very large times is
To next order real time paths with=1, »'=0 and»  found as
=0, v’ =1, respectively, contributecf. Figs. Hc,d)]. Fort
>1/w, a relevant real time fluctuation path with=1 start-
ing atqs moves via a TP afj; +iLyn’ 7,n’ large, to the left

1
pa(ds, — ) = iP,B(Qf ,—0f)+p1(ds,—0dr) (82
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40— T r 20 T T T T TABLE I. Transmission factoP=1"/T";, for the symmetric Eck-
art barrierI' is the classical rate and parameters are the same as in
Fig. 8.
@ oL i o} i wpht B Prsemt. Punt Porst  Psorst Pe
A ’
et 1.5 1.10 1.10 1.13 1.13 1.13
. 1 3 1.50 1.50 1.54 1.52 1.52
s 5 2.98 3.84 3.18 3.11
1 L 2 1 . 1
TP SO A S/ A CRE A
wyh 3 wph B . . : . .
10 136.2 132.2 248 149 162
FIG. 8. Transmission factd? as a function of inverse tempera- 12 1613 1606 3058 3006 1970
ture for an Eckart barrier wite=12, a=27V, /i w,, . P is defined 16  6.0X10° 6.03x10° 2.56x10° 7.41x10°
by P=T/T with T the classical rate, i.e., the high temperature 18  1.54<10° 1.54x 10 9.1x10" 1.88x10’

limit to Eq. (31). The solid line is the exact result. In the left picture
the dotted line shows the parabolic result E2fl), the dashed line “Prsemi iS the transmission factor as derived by the real time semi-
represents Eq(75), and the arrow indicates the inverse temperatureclassical approach presented in this paper.
corresponding td ;. In the right picture the dashed line depicts the bp i is the transmission factor of the “unified” semiclassical ap-
result Eq.(83) and the arrow refers t®./2. proach.

“Pgrstis the transmission factor according to the simplest version
with pB as specified in Eq(78). Finally, from Eq.(5) we  of Pollak’'s QTST, from Ref[32].

gain the thermal tunneling rate 9Psqrsris the transmission factor according to the full semiclassical
12 version of Pollak’s QTST, from Ref32].
_ 1] 4mVowp o= 4IW(ay,01/# 83 ®P., is the exact transmission factor.
Z|h(wphB)3 '

o ) ) connectsy; = 0 with itself, thus emerging as a solution of Eq.
This simple formula is applicable as long @s>Lo, atem-  (67) at T=T,/2(r =2). While in imaginary time methods the
perature range which can be estimatedTobelow To/2, or  pounce trajectory describes barrier penetration, here, effec-
equivalentlywpfi 5>2. To be precise, there is also a lower tjyely the same tunneling rate arises from fluctuations around
bound for the temperature. That is, f6r~0 any semiclas- real time paths, the energy of which is fixed by oscillating
sics in the Eckart barrier breaks down due to the fact thaEuc|idean OrbitS, closed in phase space, emergin@cm
then tunneling takes place in the low energy range near the 1) These latter minimal action paths solely determine the
base of the barrier where the wavelength of a wave functioremiclassical thermal equilibrium for lower temperatufes
tends to exceed the width of the barrier. From the known<-|—c, thus establishing within a semiclassical real time ap-
exact transition probabilitysee, e.g.[30]] one derives that proach the relation between the thermal density matrix and
this scenario becomes relevant fopf 3>2m*(Vo/hwp),  the thermal tunneling rate, long an open question in thermal
corresponding in the semiclassical linWp /% w,>1 t0 €X-  rate theory.
tremely low temperatures. In the broad temperature range Thijs represents substantial progress when compared with
between these bounds, i.e7Z wyfiB=27*(Vo/hwp), the  other attempts. While Pollak’'s new quantum transition state
above rate expression describes the decay rate with femar{ﬁeory(QTS‘l’) [11] is based on a numerically exact evalua-
able accuracy when compared to the exact result, even fqion of the thermal flux, it suffers from a simple semiclassical
moderate barrier heightsee Fig. 8 Table | presents a nu- approximation to the real time propagators. In the associated
merical comparison with results from other approaches. Fofy|| semiclassical calculation by Pollak and Eckhaf@g]
temperatures abové./2 the real time semiclassical rate is only half of the bounce action appears in the exponential
slightly too small and coincides fof >T, with the well-  factor for temperatures beloW./2 and the corresponding
known “unified” semiclassical rate formula gained from the tunne"ng rates are too |arq8ee also Tab|e)| The centroid
thermal average over the transmissio(E)=1A1  method[10] gives the correct action factor, but its semi-
+exdS(E)/A]}, where S(E) is the bounce action fof  empirical factorization of thermal and dynamical contribu-
<T¢/2. The small deviations from the exact rate are due tajons leads to a prefactor that is too small for lower tempera-
the fact that in the simple version of the theory presentedures. Finally, from semiclassical real time calculations for
here anharmonicities of the potential are neglectedTor the Eckart barrier based on the simple semiclassical propa-
>T, and taken into account only in leading orderTig>T  gator[17,18, tunneling probabilities in the deep tunneling
>Tg/2. A perturbative expansion in an anharmonicity pa-regime cannot be properly extracted since they depend
rameter allows for a systematic improvement. For the sametrongly on the initial state.
reason, the temperature region around? is not well de-
scribed. In the deep tunneling regidr< T./2, which is no- VI. CONCLUSIONS
toriously problematic for real time rate theories, our theory
performs excellently. In fact, the low temperature formula We have developed a unified semiclassical theory that
(83) turns out to be identical to the result derived within the describes the real time dynamics of quantum statistical sys-
instanton/bounce approagéee, e.g.[31]]. The bounce is an tems for all temperatures including coherent and incoherent
oscillating Euclide an orbit, periodic in phase space, whichprocesses. Starting from the exact nonequilibrium dynamics,
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the approximate density matrix is obtained by employingmechanics. However, the theory not only reproduces the re-
semiclassical propagators in real and imaginary time comsults of various other semiclassical thermal rate theories for
bined with a stationary phase evaluation. Accordingly, thehigher temperatures, but also covers with no further assump-
relevant classical mechanics takes place in the complex cdions the low temperature regime where so far other real time
ordinate plane, where the energy of classical real time trajeanethods have failed.

tories is fixed by the Euclidean orbits determining the equi- Several questions could not be analyzed in detail in this
librium distribution. Consequently, real time paths follow article. There is first the temperature range around?
from solving an initial value rather than a boundary valuewhere high and low temperature semiclassics approximately
problem. While this procedure can be used to study the dymatch; we briefly sketched corresponding improvements.
namics for a wide class of systems and initial conditions,Second, we only touched in passing the explicit real time
here we concentrated on the flux across a double well potertynamics in the transient time domain, where for incoherent
tial and an Eckart barrier. Then, for high to moderate tem-processes the relaxation to a stationary flux occurs. Third,
peratures the Gaussian approximation suffices to obtain ather initial preparations, e.g., to gain correlation functions,
stationary flux. In the tunneling domain however, this ap-were beyond the scope of this paper.

proximation fails and the complex plane dynamics allows us Moreover, with the appropriate formalism at hand further
to identify the dominant quantum fluctuations in the real timeextensions are possible. While the dynamics of dissipative
propagators. These are zero-mode-like phase fluctuatiorsystems has already been studied in the high to moderate
which give rise to a diffusion along the scaffold of classicaltemperature rang21,2€|, the low temperature tunneling re-
orbits. Quantum tunneling in the real time domain can thugjime is now in principle open for investigations. Of course, a
be interpreted semiclassically as a diffusion process on arucial point for all further applications is to develop an ap-
certain family on classical real time paths. By systematicallypropriate numerical algorithm to mimic the “diffusion” in
incorporating the phase fluctuations, we managed to derivithe complex plane. We hope to make progress in this direc-
coherent tunneling dynamics within a real time semiclassicafion in the near future.

formalism.

Regarding incoherent decay in the deep tunneling regime,
the theory revealed the connection between thermal equilib-
rium and the tunneling rate upon which thermodynamic rate We thank P. Pechukas for many interesting discussions. J.
formulas are based. In the semiclassical limit, flux across thé. acknowledges financial support from the Alexander von
barrier and equilibrium are linked via the intimate relation Humbaldt Foundation. Further support was provided by the
between Euclidean and real time paths in the complex planBAAD and the DFG through Grant No. SFB276.
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