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Semiclassical time evolution of the density matrix and tunneling

Joachim Ankerhold and Hermann Grabert
Fakultät für Physik, Albert-Ludwigs-Universita¨t Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 15 October 1999!

The time dependent density matrix of a system with potential barrier is studied using path integrals. The
characterization of the initial state, which is assumed to be restricted to one side of the barrier, and the time
evolution of the density matrix lead to a threefold path integral which is evaluated in the semiclassical limit.
The semiclassical trajectories are found to move in the complex coordinate plane and barrier penetration only
arises due to fluctuations. Both the form of the semiclassical paths and the relevant fluctuations change
significantly as a function of temperature. The semiclassical analysis leads to a detailed picture of barrier
penetration in the real time domain and the changeover from thermal activation to quantum tunneling. Deep
tunneling is associated with quasizero modes in the fluctuation spectrum about the semiclassical orbits in the
long time limit. The connection between this real time description of tunneling and the standard imaginary time
instanton approach is established. Specific results are given for a double well potential and an Eckart barrier.

PACS number~s!: 82.20.Db, 05.40.2a, 03.65.Sq
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I. INTRODUCTION

Semiclassical theories have been found to be extrem
powerful in understanding the dynamics of complex qu
tum mechanical systems. Special attention has been pa
theories of tunneling processes as they occur in phys
chemistry, and biology. Currently, a variety of quantum ra
theories are in use explaining experimental findings for s
eral situations of interest@1#. Among them, roughly speak
ing, two different strategies can be distinguished. The fi
class of approaches constructs the rate from purely ther
dynamic considerations. An example is the bounce or ins
ton method~also called ImF method!, originated by Langer
@2# and extended by several authors@3#. In essence, tunneling
rates are derived from the imaginary time dynamics in
inverted potential. Other approaches of this type@4,5# start
from periodic orbit theory@6# in imaginary time. Tractable
rate formulas are obtained with the centroid method@7# lead-
ing to a semiempirical separation of dynamical and therm
factors. These methods are computationally very effici
and have been applied successfully to systems as diver
tunneling centers in metals, Josephson junctions, or hy
gen bonds, to name but a few. However, closer examina
reveals that these theories are based in one way or anoth
ad hoc assumptions that are not derived from first princip
For instance, the ImF method postulates a relation betwe
the decay rate and the imaginary part of the free energy
fact, in some cases thermodynamic methods fail to pre
the correct rate, e.g., they do not reproduce the energy d
sion limited decay for very weakly damped systems at fin
temperature. Moreover, these methods are designed to
scribe incoherent decay only.

The second class of theories describes barrier crossin
terms of dynamical quantities. Perhaps most familiar
Yamamoto’s rate formula@8#, in essence a Kubo type for
mula relating the rate to a flux-flux correlation function. A
shown in@9# it is exact only for scattering problems, while i
multi- or metastable systems one has to assume the exis
of a plateau region for times long compared to typical rel
PRE 611063-651X/2000/61~4!/3450~16!/$15.00
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ation times but small compared to decay times. This restr
the approach to incoherent decay. Recent advances in
real time description of barrier crossing based on flux-fl
correlations have been made, e.g., by Vothet al. @10#, who
incorporated analytically known dynamical factors into t
rate expressions. Quite recently, Pollak and co-work
@11,12# were able to improve this idea by using a therma
symmetrized flux operator. A different way of including dy
namical information in an approximate way, favored
Miller and co-workers, employs semiclassical initial valu
representation for the quantum propagator@13#. Although
quite successful at high to moderate temperatures, where
quantum dynamics is governed by quasiclassical abo
barrier processes, these approaches usually fail at low t
peratures where deep tunneling prevails. Finally, we men
a kind of hybrid approach, the ‘‘real time’’ instanton theo
@14#, which includes tunneling in the real time propagator
means of instantaneous tunneling transitions. This metho
restricted to multistable systems in the low temperature li
@15#. Hence, although the semiclassical theory of quant
tunneling is often regarded as well settled, this turns ou
be true only for some limiting cases. What would be des
able is a semiclassical theory starting from first princip
that covers the entire range of temperatures as well as co
ent and incoherent tunneling processes.

In the realm of classical physics the theory of therma
activated rates is rather firmly based. In a seminal paper@16#
Kramers determined thermal decay rates from the equa
of motion for the phase space distribution function, i.e., fro
the real time dynamics of the system. A corresponding tre
ment of tunneling in the semiclassical limit seems not to
possible, since all real time minimal action paths connect
two sides of the barrier have energies larger than the ba
energy. In the dynamical approaches discussed above t
trajectories do account for tunneling corrections to class
rates@13,17#, but it is usually argued@18,19# that within a
semiclassical theory deep tunneling can only be describe
incorporating in addition imaginary time trajectories as th
are used in thermodynamic methods. The lack of a first p
3450 © 2000 The American Physical Society
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ciples semiclassical theory of tunneling is intimately co
nected with a fundamental shortcoming of semiclassical
time propagators derived from a single dominant path. Si
tunneling arises from coherent interference of waves, a
isfactory semiclassical theory needs to capture this inter
ence pattern in terms of an appropriate family of real ti
paths rather than making ad hoc modifications of sim
semiclassical propagators.

Very recently, we have proposed a theory for transp
across a barrier based solely on the real time dynamics o
density matrix and the semiclassical approximation@20#. As
a notable feature, the method applies equally well to dam
and undamped systems and comprises in a unified way
entire range from thermally activated decay to low tempe
ture tunneling. In appropriate limits the results of other me
ods are recovered. Here, we explain the technicalities of
approach and evaluate the semiclassical propagator in d
for two paradigmatic systems, namely, a double well pot
tial and an Eckart barrier. Therein, we mainly concentrate
one-dimensional models. It turns out that the correspond
theory already reveals the basic structure and that the ge
alization to multidimensional systems, though tedious in
tail, is straightforward within the path integral formalis
@21#.

The article is organized as follows. Next, in Sec. II, w
outline the general semiclassical theory, which is then u
in Sec. III to derive as a simple example the stationary fl
across a parabolic barrier. The main part of the paper stu
the real time dynamics from high down to vanishing te
perature for the cases of a double well potential~Sec. IV! and
an Eckart barrier~Sec. V!. Finally, in Sec. VI we summarize
the main features of the approach and present our con
sions.

II. GENERAL THEORY

We consider a statistical ensemble of quantum mech
cal particles of massM moving in a barrier potentialV(q) at
inverse temperatureb51/kBT. We choose the coordinateq
so that the barrier top is located atq50 and measure ener
gies relative to the barrier energy by puttingV(0)50. The
initial nonequilibrium state is assumed to be of the form
an equilibrium state restricted to the left side of the barr
Below, we will invoke the semiclassical approximatio
which is appropriate provided the barrier heightVb is by far
the largest energy scale in the system. The time evolutio
the density matrixr(t)5exp(2iHt/\)r(0)exp(iHt/\) reads in
coordinate representation

r~qf ,qf8 ,t !5E dqidqi8Gt~qf ,qi !r~qi ,qi8,0!Gt~qf8 ,qi8!*

~1!

where the real time propagator is given by

Gt~q,q8!5^quexp~2 iHt /\!uq8& ~2!

and r(qi ,qi8,0) describes the initial state. In principle, fo
our purpose any initial distribution that matches the equi
rium on the left side and vanishes on the right side of
barrier top is appropriate. As long as the restricted equi
rium state gives vanishing probability of finding the partic
-
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on the right side of the barrier top, different initial prepar
tions lead to the same long time behavior of the dens
matrix. Here we put explicitly

r~q,q8,0!5Z21rb~q,q8!u~2q!u~2q8! ~3!

for convenience, with the proper normalization factorZ and
the equilibrium density matrix

rb~q,q8!5^quexp~2bH !uq8&. ~4!

Now, employing the path integral representation f
exp(6itH/\) and exp(2bH), respectively, the above inte
grand in Eq.~1! can be written as a threefold path integr
where two real time pathsq(u) andq8(u) run in the interval
0<u<t from qi and qi8 to fixed end pointsqf and qf8 , re-
spectively, while the former coordinates are connected by
imaginary time pathp̄(s) in the interval 0<s<\b ~see Fig.
1!. The real time paths describe the time evolution of t
system and the imaginary time path the initial state.
course, a more complete theory would explicitly include t
coupling to a heat bath environment. In fact, the gene
scheme of this approach in the case of damped systems
already been given elsewhere@21#. Much of the analysis pre-
sented below can in principle be extended to this situati
however, only a limited number of steps can be carried
analytically due to the more complicated form of the effe
tive action functionals. Here, we limit ourselves to u
damped motion, which allows us to treat deep tunnel
without resorting to numerical methods. In this way, t
guiding concepts will become more transparent.

The density matrixr(q,q8,t) contains all information
about the nonequilibrium quantum process, in particular,
average of the operatorF5@pd(q)1d(q)p#/2M gives the
flux out of the metastable state, i.e., in coordinate repres
tation

J~ t !5~\/2iM !@]r~qf ,2qf ,t !/]qf #qf50 . ~5!

If the flux becomes quasistationary,J(t)5Jfl within a certain
‘‘plateau region’’ of time, the escape rate follows fromG
5Jfl .

While an exact solution of Eq.~1! for anharmonic barrier
potentials is not possible, a high barrier naturally sugges
semiclassical approximation. In the semiclassical limit t
above path integrals are dominated by minimal action pa
determined by Hamilton’s equation of motion in a potent
eitherV(q) ~for the real time propagators! or 2V(q) ~for the

FIG. 1. Loop of stationary imaginary and real time paths in t
complex time planez5u1 is.
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3452 PRE 61JOACHIM ANKERHOLD AND HERMANN GRABERT
equilibrium density matrix!. Each path contributes with a
exponential factor containing its minimal action and a pr
actor arising from the Gaussian fluctuations about the m
mal action paths. Specifically, the action in real time rea

S~q,q8!5E
0

t

du@Mq̇2/22V~q!# ~6!

while its imaginary time version, the so-called Euclidean
tion, is given by

S̄~q,q8!5E
0

\b

ds@MqG 2/21V~ q̄!#. ~7!

Thus, in Gaussian semiclassics the propagator~2! is approxi-
mated as

Gt~q,q8!5 (
cl.paths

AA~q,q8! expS i

\
S~q,q8!2 i

p

2
n D ~8!

where A(q,q8)5@2]2S(q,q8)/]q]q8#/2p i\ and n is the
Maslov index. Throughout this paper we also use an equ
lent representation of the prefactor, namely,

A~q,q8!5
iM

2p\ S q̇~0!q̇~ t !
]2W~q,q8!

]E2 D 21

~9!

whereW(q,q8)5*q
q8dq9p5S(q,q8)1Et is the short action.

The corresponding approximation to the equilibrium dens
matrix ~4! follows by formal analytic continuationt→
2 i\b, i.e., by replacingS(q,q8) by iS̄(q,q8) in Eq. ~8!
with v50. As a result, the integrand in Eq.~1! is completely
determined by classical mechanics in real and imagin
time, respectively, and dominated by an action factor

exp@2S~qf ,qf8uqi ,qi8!/\2 ip~v2v8!/2#

with

S~qf ,qf8uqi ,qi8!52 iS~qf ,qi !1S̄~qi ,qi8!1 iS~qf8 ,qi8!.
~10!

With the approximate integrand at hand, it is consisten
evaluate the ordinary integrations in Eq.~1! in stationary
phase. The stationary phase points are determined by m
mizing S with respect to the initial coordinatesqi ,qi8 , i.e.,

]S

]qi
U

~qf ,q
f8!

50,
]S

]qi8
U

~qf ,q
f8!

50. ~11!

Since the end pointsqf ,qf8 are fixed, the resulting stationar
phase pointsqs(t) and qs8(t) are functions of time with
qs(0)5qf ,qs8(0)5qf8 . For finite t these roots are in genera
complex. The dominant imaginary time pathq̄s(s) connects
qs8(t) with qs(t), and the two real time pathsq(u) andq8(u)
connectqs(t) andqs8(t) with qf andqf8 , respectively. Hence
the steepest descent approximation naturally provides a m
ping from the integration contour in the complex time pla
onto a loop in the complex coordinate space connecting
end points~Fig. 1!. To avoid potential confusion with othe
methods, we emphasize that the appearance of com
-
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paths has nothing to do with tunneling but rather is merel
consequence of the stationary phase approximation and h
also for systems with no barrier at all. In fact, it turns out th
the complex semiclassical real time trajectories used h
never cross the barrier top, in contrast to paths emerg
from ad hoc complexification procedures occasiona
adopted to describe barrier penetration@22#.

Starting from the steepest descent conditions~11! and ex-
ploiting Hamilton-Jacobi mechanics, one immediately d
rives

ps~0!5 i p̄s~\b! ps8~0!5 i p̄s~0!, E5E85Ē. ~12!

Here,ps(u)@ps8(u)# is the momentum of the real time pat
q(u)@q8(u)# with energy E@E8# connecting qs@qs8# and
qf@qf8#; accordingly, p̄s(s) denotes the momentum of th
imaginary time pathq̃s(s) running fromqs8 to qs with Eu-

clidean energyĒ52 p̄s
2/2M1V(q̄) ~see Fig. I!. Equation

~12! can also be expressed asdS/dt50 with the solution

S~qf ,qf8uqs ,qs8!5S̄~qf ,qf8!. ~13!

Hence along the loop of steepest descent paths the full ac
is just given by the equilibrium action and is thus indepe
dent of time. Differentiating Eq.~13! with respect toqf ,qf8 ,
one finds

ps~ t !5 i p̄0~\b!, ps8~ t !5 i p̄0~0!, ~14!

where p̄0(s) is now the momentum of the imaginary tim
path q̄0(s) connectingqf8 with qf in imaginary time\b.

This path has Euclidean energyĒf that depends onqf , qf8 ,
and\b but not ont. Hence, we first deduce that the energ
in Eq. ~12! are given byĒf , which implies energy and mo
mentum conservation throughout the loop in Fig. 1. S
ondly, we arrive at the remarkable result that the sequenc
time dependent stationary phase pointsqs(t)@qs8(t)# is itself
a minimal action path starting atqs(0)5qf@qs8(0)5qf8# with

energyĒf .
To complete the ordinary integrations in Eq.~1! over the

initial coordinatesqi ,qi8 we transform to fluctuationsy5qi

2qs and y85qi82qs8 about the stationary phase points. A
expansion of the full action~10! for fixed end pointsqf ,qf8
around the stationary phase points up to second order l
to S(qf ,qf8uqi ,qi8)5S̄(qf ,qf8)1dS (2)(y,y8) with

d~2!S~y,y8!5
1

2
~y,y8!S~2!S y

y8 D ~15!

where

S~2!5S SssSss8
Sss8Ss8s8

D ~16!

is the matrix of second order derivatives,Sss

5]2S(qi ,qi8)/]qi
2, etc., to be taken atqi5qz , qi85qs8 .

Inserting Eq.~3! into Eq. ~1!, the integrand now reduce
to a product of Gaussian weight factors for deviations fro
the stationary phase points and an initial state factoru(2qs

2y)u(2qs82y8) describing deviations from thermal equ



t

n

m

ie

st
s
-

h
su
fo
ic
n
w

ra
ar
re

an
ic
th
tly

m
s

r-

al

m

c-
e-
ese

tive

nter-

PRE 61 3453SEMICLASSICAL TIME EVOLUTION OF THE DENSITY . . .
librium at t50. Provided there is only one semiclassical pa
for each of the propagators, we obtain from Eq.~1! by virtue
of Eqs.~13! and ~15! the semiclassical time dependent de
sity matrix in the form

r~qf ,qf8 ,t !5
1

Z
rb~qf ,qf8!g~qf ,qf8 ,t !. ~17!

Here, deviations from equilibrium are described by a ‘‘for
factor’’

g~qf ,qf8 ,t !5
1

p E
2`

u~qs!

dzE
2`

u8~z,qs8!
dz8e2~z21z82!, ~18!

where

u~qs!52qsADet@(~2!#

2\(s8s8
,

u8~qs8 ,z!52qs8A(s8s8
2\

1z
(ss8

ADet@(~2!#
~19!

with Det@S (2)#5SssSs8s82(Sss8)
2. In deriving Eq.~17! we

invoked the fact that Hamilton-Jacobi mechanics impl
@23#

FA~qf ,qs!Ā~qs ,qs8!A~qf8 ,qs8!

Det@(~2!#
G1/2

5Ā~qf ,qf8!. ~20!

Note that for an initial equilibrium state, formallyu(•)→1
in Eq. ~3! so thatu,u8→` in Eq. ~18!, the form factor be-
comes 1 and the semiclassical density matrix is in fact
tionary. If there is more than one classical path one ha
sum in Eq.~17! over the contributions of all of them. Cer
tainly, the above formulas~18! and ~19! are applicable only
as long as the Gaussian semiclassical and stationary p
approximations are valid, i.e., as long as fluctuations are
ficiently small. This will be seen to be no longer the case
low temperatures and/or very long times. How the class
paths in the complex plane can then be used as a skeleto
an extended semiclassical/stationary phase calculation
be shown below.

In the remaining parts of the article we apply the gene
formalism to specific barrier potentials. Here, since we
particularly interested in the flux across the barrier, we
strict our investigation to nondiagonal end coordinatesqf

and qf852qf close to the barrier top. This does not me
that we may constrain ourselves to study only local dynam
near the barrier top. Especially for lower temperatures,
nonequilibrium state in the barrier region is predominan
governed by global properties of the potential.

III. PARABOLIC BARRIER

The semiclassical and the stationary phase approxi
tions are always exact for quadratic potentials. Hence, a
simple test case we consider first a parabolic barrier

V~q!52 1
2 Mvb

2q2. ~21!
h
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to
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a

Accordingly, the imaginary time dynamics runs in a ha
monic oscillator potential. For the minimal action pathq̄0(s)
connecting2qf with qf in time \b one obtains

q̄0~s!5
qf

sin~vb\b/2!
sin@vb~s2\b/2!#. ~22!

This leads to the well-known equilibrium density matrix

rb~qf ,2qf !5
1

A4pdb
2 sin~vb\b!

3expS 2cot~vb\b/2!
qf

2

2db
2D ~23!

with the relevant length scaledb5A\/2Mvb.
The real time dynamics follows simply. The classical re

time pathsq(u) and q8(u) lead to the end pointsqf and
2qf , respectively, and hence obeyq(t)5qf , q8(t)52qf .
On the other hand, the stationary phase condition~12! im-
plies q̇(t)5 i q̇̄(\b), q̇8(t)5 i q̇̄(0) and we readily find
q(u)5q̄(\b2 i t 1 iu), i.e.,

q~u!5
qf

sin~vb\b/2!
sin@vb~\b/22 i t 1 iu !#,

q8~u!5q~u1 i\b!, 0<u<t. ~24!

At time t the imaginary time pathq̄0(s) from 2qf to qf
is mapped onto the pathq̄s(s)5q( i\b2 is),0<s<\b,
connectingqs8(t)5q8(0) with qs(t)5q(0) ~Fig. 2!. The sta-
tionary phase points

qs~ t !5
qf

sin~vb\b/2!
sin@vb~\b/22 i t !#,

qs8~ t !52qs~ t !* ~25!

are as functions oft also classical paths moving away fro
the barrier top ast increases—qs(t) to the right andqs8(t) to
the left for qf.0. For longer timesvbt@1, the stationary
phase points asymptotically tend toward the limiting traje
tories starting fromqf50, referred to as asymptotes henc
forth. Similar to separatrices in classical phase space, th
asymptotes divide the complex plane into regions of nega

FIG. 2. Semiclassical paths~dashed lines! in the complex plane
near the parabolic barrier top. Shaded area contains relevant i
mediate coordinatesqi ,qi8 reached by fluctuations along arrows.
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and positive Euclidean energy: in the sectors including
real axis classical real time motion hasĒ,0 ~but E<0 or
E.0! while in the remaining partsĒ.0. However, in con-
trast to simple classical separatrices the asymptotes are
perature dependent. The angela of theqs andqs8 asymptotes
with the positive and negative real axis, respectively,
found as

a5
p2vb\b

2
. ~26!

Now, for the nonequilibrium preparation~3! the initial
coordinatesqi ,qi8 are constrained to Re$qi%,Re$qi8%<0. Since
qs(t) and qs8(t) are on different sides of the barrier,r(qf ,
2qf ,t) gains nonvanishing values only due to fluctuatio
that effectively shiftqi away fromqs and across the barrie
top @see Eq.~18!#. For the parabolic barrier potential th
matrix elements in Eq.~16! take the simple form

Sss5Mvb@cot~vb\b!2 i coth~vbt !#, Ss8s85Sss* ,

Sss852
Mvb

sin~vb\b!
, ~27!

so that the matrixS (2) can easily be diagonalized. One find
for the eigenvalues

l6

Mvb
5cot~vb\b!6S cot~vb\b!22

1

sinh~vbt !2D 1/2

.

~28!

While, in principle, with Eq.~18! we can now evaluate th
complete dynamics of the density matrix, we will conce
trate here on the long time asymptotics of the nonequilibri
state. Then, in the asymptotic regionvbt@1 the eigenvalue
l2 tends to zero asl2}Mvb exp(2vbt), reflecting the in-
stability of the parabolic barrier. Hence, fluctuations arou
the stationary phase points with the least action increase
cur in the direction of the eigenvector with eigenvaluel2 .
These fluctuations are of the formyi5uyi u exp@i(a1vb \b)#
andyi85uyi uexp(ia), so thatqi andqi8 move simultaneously
along their asymptotes, meeting at the barrier top~see Fig.
2!. Now, inserting the matrix elements~27! and the station-
ary phase points~25! into Eq. ~19! and considering the limit
vbt@1, the relevant form factor turns out to be stationary

gfl~q,2q!5
1

Ap
E

2`

i2qV

dxe2x2
~29!

with V5Acot(vb\b/2)/(8db
2). The corresponding constan

flux across the barrier is obtained from Eqs.~5! and ~17! as

Jfl5
\

2ZM
rb~0,0!

]gfl~qf ,2qf !

]qf
U

qf50

, ~30!

which leads to the well-known result

G5Jfl5
vb

4p

1

Z sin~vb\b/2!
. ~31!
e

m-

s

s

-

d
c-

Here,Z denotes an appropriate normalization constant wh
cannot be derived from the purely parabolic potential. This
not really a problem since realistic potentials always exh
a well-behaved potential minimum and thenZ follows, e.g.,
as the relative normalization with respect to this minimu
Note that for the quadratic potential the results~29! and~31!
are formally valid for all timesvbt@1. However, it was
shown in@24# that due to the lack of a well-behaved groun
state it makes sense physically to use the parabolic barrie
T.Tc only wherevb\/kBTc5p. For lower temperatures
vb\b→p, large quantum fluctuations render the Gauss
approximation insufficient. Interestingly, the rate express
~31! diverges at the lower temperatureT05Tc/2 only where
the parabolic density matrix~23! ceases to exist.

IV. DOUBLE WELL POTENTIAL

A model well behaved for the entire range of tempe
tures with many applications is the bistable dynamics o
particle moving in a double well potential,

V~q!52
Mvb

2

2
q2S 12

q2

2qa
2D . ~32!

Here, the barrier is located atq50, the wells atq56qa ,
and the barrier height isVb52V(qa)5(Mvb

2/4)qa
2. This

potential exhibits rich quantum dynamics, namely, incoh
ent hopping between the wells over a broad range of te
peratures that changes to coherent oscillations forT→0. Due
to the complexity of the dynamics this is a highly nontrivi
problem for the semiclassical approach, where the ra
db /qa serves as the small parameter.

A. Thermal equilibrium

The Euclidean mechanics in the inverted potential2V(q)
can be solved exactly using Jacobian elliptic functions@25#.
For the general solution one obtains

q̄0~qf ,s!5Bsn@v~B!s2f f um#, 0<s<\b, ~33!

where the boundary conditionsq̄0(qf ,0)52qf and
q̄0(qf ,\b)5qf fix the amplitudeB and phasef f . Since the
potential is no longer purely quadratic—depending
temperature—there may be several solutions, each of t
with another amplitude. In Eq.~33! the frequency is given by

v~B!5vbA12h2, h25
B2

2qa
2 , ~34!

and the phase can be represented as an incomplete el
integral

f f5F~qf /Bum!5E
0

qf /B

dx
1

A~12x2!~12mx2!
~35!

with the so-called modulusm5h2/(12h2). From the
boundary conditionq̄0(\b)52q̄0(0) and the periodicity of
the Jacobian function, sn@z12rK (m)um#5(21)rsn@zum#,
r 51,2,3,... withK(m)5F(1,m), the amplitudeB is deter-
mined by
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v~B!\b52rK ~m!1@11~21!r #f f . ~36!

Since K(m),f f.0, for fixed vb\b real solutions to this
equation exist for only a finite number of integersr>0.

Let us briefly discuss the trajectoriesq̄0(qf ,s) as the
temperature is lowered. For high temperatures solution
Eq. ~36! exist only with r 50, corresponding to direct path
from 2qf to qf ; particularly, q̄0(0,s)50. As the tempera-
ture drops below the critical temperature.

Tc5\vb /pkB , ~37!

i.e., vb\b.p, solutions of Eq.~36! with r 51 arise. Then,
for qf50 the barrier top can be joined to itself also by tw
nonlocal paths denoted byq̄6(0,s) oscillating in2V(q) to
the right and to the left with amplitude6q1 , respectively,
and energyĒ15V(q1). With further decreasing temperatu
q1 grows and eventually saturates atqa for T→0. For finite
qf the situation is rather similar: oscillating pathsq̄6(qf ,s)
exist for all qf,q1 . These paths connect2qf with qf via a
turning point at6q1 , thus differing fromq̄6(0,s) only by a
phase shift. The described scenario repeats in an analo
way at all T5Tc /r , r 52,3,4,..., wherer is the number of
turning points. At zero temperature all these oscillating pa
reach6qa with the same energyĒa5V(qa) and are then
called instantons.

Now that all proper Euclidean trajectories are identifie
the semiclassical equilibrium state follows readily. For hi
temperaturesT.Tc and end coordinatesqf near the barrier
top, rb(qf ,2qf) basically coincides with the parabolic re
sult Eq.~23! and anharmonic corrections are negligible. Th
situation changes drastically for temperatures nearTc . Then,
the bifurcation of new classical paths leads to large quan
fluctuations and one has to go beyond the Gaussian app
mation of the fluctuation integral. Slightly belowTc a caustic
appears forqf5q1 . Since the region aroundTc has already
been studied in detail elsewhere@24#, we omit this crossover
region here and proceed with temperatures sufficiently be
Tc that near the barrier top Gaussian semiclassics is a
applicable. It turns out that the paths newly emerging neaTc
are stable and dominaterb(q,q8) for all Tc.T.0, while the
unstable ‘‘high temperature’’ path and those springing up
lower T give negligible contributions. Since forqf,q1 all
pathsq̄6(qf ,s) differ only by a phase shift, one has for th
corresponding actions

S̄6~qf ,2qf !5S̄1~0,0!5S̄2~0,0! ~38!

so that

rb~qf ,2qf !52@Ā~qf ,2qf !#
1/2exp@2S̄1~0,0!/\#,

qf,q1 . ~39!

Accordingly, the matrix elementrb(qf ,2qf) changes to a
non-Gaussian distribution with a local minimum atqf50
and two maxima atqf56q1 . TherebyS̄1(0,0),0, so that
the probabilityrb(0, 0! of finding the particle atq50 is
substantially enhanced compared to its classical value.

For T→0 it is no longer sufficient to include only th
trajectories withr 51 in the semiclassical analysis, but rath
of
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all other paths withr .1 must also be taken into accoun
This is due to the fact that the smaller action factors of th
latter paths are compensated for by zero mode phase fa
from the corresponding fluctuation path integrals. Acco
ingly, all instanton contributions are summed up to yie
e.g., for coordinates near the barrier top,

rb~qf ,2qf !5
8

daA2p
e2b@V~qa!1\va/2#2Wa /\FcoshS \bD

2 D
1coshS qfqa

2da
2 D sinhS \bD

2 D G . ~40!

Here, W̄a[W̄(2qa ,qa)52\bĒ1S̄(2qa ,qa) is the short
action for an instanton from2qa to qa . Further,

D5va

4qa

A2pda

exp~2W̄a /\! ~41!

denotes the WKB tunnel splitting with the well frequenc
va5vb& andda

25\/2Mva .

B. Dynamics of stationary phase points

As in case of the parabolic barrier, the stationary real ti
paths can be directly inferred from the Euclidean dynam
at t50. From Eq.~33! and the stationary phase condition w
have

qs~ t !5Bsn@f f2 iv~B!tum#, qs8~ t !52qs@~21!r 11t#,

~42!

and q̄0(s) is mapped at time t onto q̄s(s)5q̄0@s
1 i (21)r 11t# wherer follows from Eq.~36!. In the follow-
ing we always formulate the semiclassical theory in terms
the real time pathsqs ,qs8 that ‘‘start’’ at the end pointsqf ,
2qf , respectively, and reach the initial pointsqi ,qi8 after
time t. Since the end pointsqf ,2qf are fixed, while the most
relevant initial coordinates depend on time, this backw
view of the dynamics is in fact more transparent. The r
time trajectories now start from the end coordinates we
interested in and lead to the relevant initial coordinates t
need to be integrated over with an integrand weighted
cording to the initial deviations from equilibrium. The pa
qs(t) runs in the complex coordinate plane as a periodic o
with period tp(qf)52K(12m)/v(B) ~Fig. 3!. Within one
period it connectsqf with qf via a loop crossing the real axi
also after time tp(qf)/2 at the point qc(qf)
5qs@qf ,tp(qf)/2#>qa . Thus qs(t) stays always on the
same side of the barrier top and likewiseqs8(t) on the other
side, so that the complex dynamics of the stationary ph
points starting fromqf and 2qf , respectively, reflects a
bounded motion in either of the potential wells.

Let us consider the stationary orbits as the tempera
decreases. For high temperaturesT.Tc , i.e., r 50, eachqf
dependent loop carries its own periodtp(qf) and energy
E(qf). If qfÞ0, tp is small for T@Tc and the real time
dynamics corresponds to a fast bouncing back and forth
the well. As the temperature is lowered the period gro
while simultaneously the ‘‘width’’ of the loopqc(qf)
shrinks. In the special caseqf50 the real time path reduce
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to a constantqs(0,t)50. For temperaturesT,Tc the situa-
tion changes with the appearance of new oscillating Euc
ean pathsq̄6(qf ,s) for qf,q1 . In contrast to the high tem
perature case all stationary phase point paths withqf,q1
then have the same periodtp(qf)5tp(q1) and energy
E(qf)5Ē1 , and differ only in their respective phases. Sp
cial cases areqf50 andqf5q1 : The pathqs(qf ,t),qf→0
runs along the imaginary axis, while the orbitqs(q1 ,t) de-
generates to the usual well oscillation along the real a
These properties have a direct effect on the correspon
actions. One finds by employing Cauchy’s theorem that a
each period

S@qs~qf ,ntp!,qf #5S@qs~q1 ,ntp!,q1#, qf<q1 . ~43!

Hence, allqs(qf ,t) for qf,q1 can be seen as phase shift
copies of the specific real pathqs(q1 ,t), having the same
energy, period, and action increase during one period
particular, the periodtp(q1) is large forT&Tc when q1 is
still small, tp(q1)' ln(qa /q1)/vb , and drops down totp(qa)
52p/va in the limit T→0.

C. Nonequilibrium dynamics for high and moderately low
temperatures

For t50 the density matrix is given by the initial state~3!.
The semiclassical time evolution of this state follows by
serting the proper classical paths into Eq.~17!. In the follow-
ing, we mainly focus on the long time dynamics and a
especially interested in a plateau region where the time e
lution becomes quasistationary.

We start by addressing the question of when a plat
region exists at all. Inserting the classical paths intog(qf ,
2qf ,t) in Eq. ~19!, a detailed analysis reveals that this fun
tion becomes stationary when the ratioqs(t)/ps(t) reduces
to a constant. Since this will only occur within the parabo
barrier region, a least upper bound for a plateau region
lows from the time interval within which a particle starting
a typical pointqb near the barrier top continues to experien
a nearly parabolic potential. This leads tot!tp(qb). The
lower bound is obvious: it is given by the transient time ne
the top, i.e., by 1/vb . Hence, a plateau region can be es

FIG. 3. Real time paths in the double well potential with wells
6qa ~dots! for various qf and T50 ~thin lines!. The thick line
shows a typical fluctuation connecting orbits with differentqf .
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mated to occur as long as there is clear separation of t
scales between local barrier motion and global well osci
tions, i.e., 1!vbt!vbtp(qb). In particular, in the tempera
ture domain where a plateau region exists, the Gauss
stationary phase approximations are valid and we
actually calculate a rate. These approximations break do
when the stationary phase points move far from the bar
top and times of ordertp(qb) become relevant for the barrie
crossing. This range will be addressed in the next sectio

For high temperaturesT.Tc the typical length scaleqb

can be identified withdb5A\/2Mvb. Thus, the separation
of time scales fails for very high temperatures wherekBT
*8Vb , meaning that the thermal energy is of the same or
as or larger than the barrier height. With decreasing temp
ture tp grows so that forvb\b of order 1 a wide plateau
range appears withtp' ln(qa /db)/vb . In the corresponding
density matrix anharmonic corrections are small, and we
tain approximately the parabolic result~29!. To get the rate-
here, the proper normalization constantZ is taken as the
partition function of the harmonic well oscillator,

Z5
1

2 sinh~va\b/2!
ebVb. ~44!

Hence, from Eq.~30! one regains the known result

G5
vb

2p

sinh~va\b/2!

sin~vb\b/2!
e2bVb ~45!

with the exponential Arrhenius factor and a characteristic\
dependent prefactor that formally tends tova /vb in the clas-
sical limit and describes the quantum enhancement of
rate asTc is approached.

At this point we have to be very careful: a detailed ana
sis @21# of the full density matrixr(qf ,qf8 ,t), not only of its
nondiagonal part, reveals that the nonequilibrium effects
scribed by the flux state are restricted to the barrier reg
only in the presence of damping, consistent with the fact t
finite temperature decay rates require coupling to a heat b
In the absence of damping the full density matrix does
become quasistationary and the real time trajectories exp
the strongly anharmonic range of the potential. Hence,
evaluation of the rate based upon a supposedly quasista
ary flux staterfl(qf ,2qf) for the undamped case corre
sponds to the transition state theory result. We refer to@21#
for a detailed discussion of this point.

As the temperature reachesTc large quantum fluctuations
occur and the impact of an-harmonicities becomes subs
tial. A detailed study of the bifurcation range aroundTc is
quite tedious and was already presented in@26#. Thus, we
omit explicit results here and proceed with temperatureT
&Tc where for coordinates close to the barrier top a Gau
ian approximation—then around the newly emerging pa
with amplitudes6q1—is again appropriate. As discusse
above all real time paths withqf,q1 have now the same
oscillation periodtp(q1)' ln(qa /q1)/vb . One observes tha
even though they are influenced by the anharmonicity of
potential via the Euclidean amplitudeq1 , their time evolu-
tion for T&Tc is still dominated by parabolic properties
Then a somewhat lengthy algebra leads to the quasista
ary density matrix

t
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rfl~qf ,2qf !5 1
2 rb~qf ,2qf !@gfl

~1 !~qf ,2qf !

1gfl
~2 !~qf ,2qf !#, ~46!

wheregfl
(6) describe the contributions from each of the tw

oscillating Euclidean paths. Note that due to symmetry
rb(qf ,2qf), these contributions are identical and just le
to a factor of 2. In the temperature domain studied hereq1
can be gained analytically from Eq.~36! as

q15
2qa

)
S 12

p2

vb
2\2b2D 1/2

. ~47!

Accordingly, one finds with some algebra for the therm
distribution

rb~0,0!5
1

A2pdb
2usin~vb\b!u

3expFvb\bqa
2

12db
2 S 12

p2

vb
2\2b2D 2G . ~48!

The form factor now has two contributions of the form~18!
and for k15] ln(q1)/](vb\b)@1 the corresponding integra
tion boundaries read

u~6 !~qf !5
6q11 iq f

4dbAk1

, u8~6 !~qf ,z!5k1@u~6 !~qf !2z#.

~49!

Here, we employed the fact that nearTc the derivativeSss is
dominated by ]2S̄/]qi

2, which is proportional to
]E1 /](vb\b)}k1 . In this way, using the normalizatio
~44!, the result for the rate is

G5
vb

2p

sinh~va\b/2!

A2usin~vb\b!u
Avb\b2

p2

vb\b
e2bVb.

~50!

This expression is valid for temperaturesT,Tc where still
k1@1, a region that can be estimated asT somewhat larger
thanTc/2. There are two interesting observations to menti
first, the exponentially large term in the thermal distributi
~48!—a consequence of the new Euclidean paths—is exa
canceled by a corresponding term that arises from the de
tive of the form factor. In this way, the rate is still dominate
by the characteristic ‘‘Arrhenius factor.’’ Second, in the lim
T→Tc the above-Tc formula ~45! and the below-Tc result
~50! both approachGc5(vb/2p)sinh(va \b/2)exp(2bVb);
however, the derivatives]G/]T are different. This disconti-
nuity in the slope of the temperature dependent rate is
moved by the full semiclassical theory@26#, which takes the
non-Gaussian fluctuations nearTc into account and leads to
smooth changeover between the rate formulas~45! and~50!.

With further decreasing temperature the amplitudeq1
tends to saturate atqa so that k1→0 and the above rate
expression is no longer applicable. Furthermore, the pla
region shrinks and eventually vanishes so that the assu
tion of a quasistationary flux state becomes inadequate e
in the sense of the transition state theory limit of a we
n

l

:

ly
a-

e-

au
p-
en
k

damping theory. We note that in case of finite damping
meaningful rate, then describing incoherent quantum tun
ing, can be found for much lower temperatures. To inve
gate the time dependence ofr(qf ,2qf ,t) with no damping
in the limit of deep tunneling, we consider the caseT50 in
the next section.

D. Nonequilibrium dynamics for zero temperature

Any Gaussian semiclassical approximation to the r
time propagator is expected to break down for very low te
peratures and very long times where quantum tunne
comes into play. In fact, as yet no satisfactory semiclass
procedure has been found to describe deep tunneling in
time domain. The crucial question raised is this: How c
classical trajectories that either oscillate in one of the pot
tial wells, here with energyE,0, or move over the barrier
here withE.0, produce exponentially small contributions
the semiclassical propagator that originate from quant
states connecting the two wells under the barrier. Here,
present a mechanism that is based only upon the com
plane mechanics discussed above and avoids any addit
ad hoc insertion of ‘‘barrier paths.’’ Since the complex pla
dynamics behaves as the usual classical real time mecha
paths with E,0 never cross the barrier. However, a fu
semiclassical treatment needs to account for the domin
fluctuations about the semiclassical paths. Now, forT,Tc
there is a whole family of looplike orbits in the comple
plane; all with the same energy, period, and action incre
after one period, differing from each other only by their r
spective phases, i.e., by their crossing pointsqf<q1 with the
real axis. It turns out that each time these orbits pass t
end coordinateqf there are other trajectories of this fami
arbitrarily close in phase space~see Fig. 4!. The role of quan-
tum mechanics then is to induce transitions between th
orbits via small fluctuations. For sufficiently long times
path starting at a certainqf near the barrier top may succe
sively slip down to an orbit with another phaseqf8 , eventu-
ally reach the stable regions around6qa , and fluctuate in
the long time limit between these regions. That this scena
actually describes the low temperature coherent tunne
dynamics has been discussed briefly in@20# and will be de-
scribed in some detail in the following.

For T50 the amplitude of the Euclidean time paths
q15qa . Thus, all stationary paths,qs(qf ,t),qs8(qf ,t) have

FIG. 4. Phase space orbits of complex real time paths in
double well potential atT50. In the left picture the real part of the
orbits is shown for trajectories starting withqf.0 near the barrier
top; the dot indicates the well atqa . In the right picture the corre-
sponding imaginary parts are depicted.
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energyE5V(qa) and periodta[tp(qa)52p/va . Then the
Euclidadean actionS̄(qi ,qi8) suppresses energy fluctuatio
aroundE5V(qa) exponentially, so that classical paths ru
ning in time t from qiÞqs and qs8Þqs8 to qf and 2qf , re-
spectively, i.e., with EÞV(qa), are negligible. Further

studying the short action,W(q,q8)5*q
q8dqp[S(q,q8)

1ET, one finds according to Eq.~43! that after each period
W(qf ,qf)5W(qa ,qa)50. This result combined with the
fluctuation prefactor@see Eq.~9!# gives for the Gaussian
propagator after multiple round trips and for coordinatesqf
,qa

uGnta
~qf ,qf !u2}

1

nta~qa
22qf

2!
, n51,2,3, . . . . ~51!

Hence, the probability of returning to the starting point d
creases as the number of periods increases. In contrast, i
vicinity of the wells the Gaussian propagator coincides w
the harmonic propagator. To be more precise, due to cau
in the semiclassics of this simple propagator at allnta/2, an
extended semiclassical analysis must be invoked leadin
an Airy function; details of the procedure are well know
@27# and of no interest here. The important point is that in
barrier region the simple semiclassical return probability
cays to zero for large times while in the well regions it r
mains constant. Thus, we conclude that the dominant qu
tum fluctuations neglected in the Gaussian approximatio
the real time propagators are those that connect statio
paths with the same energy but different phases, i.e., in
coordinatesqf . Effectively, these relevant fluctuations sh
q slightly away from the classical pathqs(qf ,t) to reach
another stationary pathqs(qf8 ,t) ~cf. Fig. 3!. The correspond-
ing change in action after a period and for small deviation
simply

W~qf8 ,qf !'ps~qf ,0!~qf82qf !. ~52!

This repeats at subsequent oscillations. Hence, a ‘‘fluctua
path’’ can be characterized by its sequence of crossing po
with the real axis after each round trip, e.g., byq(k), k
51, . . . ,n, for t5nta whereq(1)5qf . Accordingly, a fluc-
tuation path is not a classical path, i.e., it does not fu
Newton’s equation of motion, but it can be seen as alm
classical since it stays always in the close vicinity of a cl
sical path. In the following we first explain the general stru
ture of the extended semiclassical approximation and late
turn to details of the calculation.

As an example, let us consider a fluctuation path star
at qf that spirals aroundqa while the crossing pointq(n) with
the real axis diffuses close toqa and returns toqf in t@ta
@see Fig. 5~a!#. According to Eq.~52! on the way toqa a
particular path gathers an additional actionW1(qa ,qf),
which is imaginary due to imaginaryps(q10) @see Eq.~12!#,
where

uW1~qa ,qf !u5E
qf

qa
dq$2M @V~q!2V~qa!#%1/2 ~53!

and the1 ~2! sign stands for clockwise~anticlockwise! ro-
tation of the path in the complex plane. As long as the cro
ing point qf does not diffuse, the imaginary time path co
-
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necting the end points of the two real time paths coincide
t5nta with the imaginary time orbit connecting2qf with qf
at t50. Taking into account the phase fluctuations, howev
forces the end point of the imaginary time path to move w
the end pointq(n) of the ‘‘real time path’’ also towardqa .
The mapped imaginary time path aftert@ta therefore runs
from 2qf to qa . According to Eq. ~12! the additional
amount of Euclidean action required for this deformation
the imaginary time path exactly counterbalancesW(qa ,qf)
so that the total actionS remains constant, which reflects th
stationarity ofS along stationary paths. From close toqa the
fluctuation path spirals back toqf . However, sinceqa is a
branching point of the momentum there are two chann
the real time fluctuation path can maintain the direction
rotation or pass the turning point~TP! qa , thus changing the
sense of rotation@cf. Fig. 5~a!#. In the former case, on the
way back fromqa to qf the fluctuation path crosses the re
axis with the same direction of momentum as on the way
qa , so that due toW1(q,q8)52W1(q8,q) the path loses
the action W1(qa ,qf) again and returns toqf with
W(qf ,qf)50. In the latter case, momenta on the way ba
have opposite direction to those on the way forward so t
the path arrives atqf with action W(qf ,qf)5W1(qa ,qf)
1W2(qf ,qa)52W1(qa ,qf) and momentum2ps(qf ,0).

Moreover, a fluctuation path starting atqf.0 can either
move along the real axis to the right to reachqa or move to
the left to arrive at2qa . In the latter case, the crossing poi
q(n) diffuses across the barrier top so that the path initia
spiraling aroundqa finally orbits around2qa with the
opposite sense of rotation. Accordingly, sinceW1(qa,0)
52W2(2qa,0), the real time action facto
exp@iW(6qa,0)/\# grows or decreases exponentially for d
fusion to the right or to the left, respectively. In any cas
near6qa the semiclassical propagator has to match onto
propagators in the harmonic wells. For the two lowest lyi
eigenstates that are relevant here, the matching proce
was discussed in detail by Coleman@28#. Correspondingly,
these two states determine the relevant propagator in
spectral representation. It turns out that a TP may occur o
if iW(qf ,6qa),0. This has profound consequences on
extended semiclassical approximation:~i! A relevant fluctua-
tion path fromqf to qf must reach6qa rotating clockwise to
have a TP. ThenW1(qa ,qf)1W2(qf ,qa)52i uW(qa ,qf)u

FIG. 5. Diffusion of the crossing pointq(n) of a fluctuation path
along the real axis~thick lines! for various cases discussed in th
text. Dots indicate the wells at6qa that are branch points for the
momenta; thin vertical lines the end coordinates at6qf . Solid lines
refer to the forward and dotted ones to the backward propagato
crossing of a dot is a TP.
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and the corresponding contribution to the propagator ha
exponentially small factor exp@22uW(qa ,qf)u#. ~ii ! A fluctua-
tion path with more than one TP has to alternately visit T
at 6qa , thereby changing its sense of rotation repeate
In passing from one TP to the next the path gathers
action W2(0,2qa)1W1(qa,0)5W2(0,qa)1W1(2qa,0)
5 i uW(qa ,2qa)u[ iW̄a which coincides with the instanto
action in D introduced in Eq.~41!. Hence, according to~i!
contributions from fluctuation paths with TPs do not pl
any role for short times. For longer times, however, th
become increasingly important, particularly since a fluct
tion path may spend an arbitrary period of time at the T
6qa where V8(qa)50 before leaving them. The detaile
analysis shows~see below! that for t@ta the phase space o
equivalent fluctuations with one TP is therefore}t, which
compensates for the exponentially small action factor. Mo
over, at each TP a path gathers an additional Maslov in
n→n11. Then according to~ii ! the full density matrix is
given by a sum overn,n8 taking into account the prope
order of TPs, i.e.,

r~qf ,2qf ,t !5 (
n,n8>0

rn,n8~qf ,2qf ,t !, ~54!

wherern,n8 denotes the contribution from relevant fluctu
tion paths withn TPs in the forward andn8 TPs in the back-
ward propagator. Note thatn,n8 only label the TPs of the
two real time paths. For eachn,n8 one has also to sum ove
all imaginary time paths connecting the end points of the r
time orbits.

To evaluate the sum in Eq.~54! we start by analyzing the
term withn5n850. As discussed above the diffusion of th
real time orbits is then irrelevant and the imaginary time p
has to run from2qf to qf . To lowest order inD @see Eq.
~40!# we have the two imaginary time pathsq̄6(qf ,s)
emerging atTc that connect2qf with qf via TPs at6qa ,
respectively. AtT50 other solutions of the imaginary tim
dynamics withr .1 @cf. Eq. ~36!# just contain additional
intermediate instantons, i.e., imaginary time trajectories c
nectingqa with 2qa or vice versa. For an equilibrium initia
preparation~small! fluctuations about the stationary paths t
ward6qa , respectively, give identical contributions and w
thus recoverrb(qf ,2qf)/Z @Eq. ~40!# in the limit T→0
with the partition function

Z52 exp@2bV~qa!2b\va/2#cosh~\bD/2!. ~55!

For the nonequilibrium preparation, however, only fluctu
tions toward2qa contribute @Fig. 5~b!#. In this way, one
obtains for coordinatesqf near the barrier top

r0,0~qf ,2qf !5
1

2
lim

b→`

1

Z
rb~qf ,2qf !

5
4

A2pda

exp@2W̄a /\#cosh~qfqa/4da
2!2

[ 1
2 c0~qf !

2, ~56!
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where we used the short action of an instantonW̄a5W̄(qa ,
2qa) with W̄a5uW(qa ,2qa)u andc0(qf) denotes the semi
classical ground state wave function in the double well.

The next order real time paths are those with one TP,
n51, n850 andn50, n851 in Eq.~54!. This real time path
qs(t) makes an excursion fromqf via a TP atqa to 2qa in
the case where att50 the end points2qf andqf are con-
nected by an imaginary time pathq̄2 , while it diffuses from
qf via a TP at2qa to qa in the case ofq̄1 . Accordingly, one
observes that for an equilibrium initial preparation all cont
butions cancel, e.g., the contribution corresponding toq̄2

with n51, n850 cancels that corresponding toq̄1 with n
50, n851. In fact, it can be shown in the same way that f
an equilibrium initial state all terms in the sum~54! with
n,n8.0 vanish. However, for the initial preparation~3! a
finite result follows due to the projection onto the left side
the complex plane. Hence, both real time orbits have to
near2qa whereby one trajectory has a TP atqa . According
to the above discussion we gain the following action facto
For n51, n850 one has exp@23uW(qa,0)u/\1qaqf /(4da

2)#
from the forward and exp@2uW(qa,0)u/\1qaqf /(4da

2)# from
the backward propagator@cf. Fig. 5~c!#, while n50,
n851 gives exp@2uW(qa,0)u/\2qaqf /(4da

2)# and
exp@23uW(qa,0)u/\2qaqf /(4da

2)# @cf. Fig. 5~d!#, respec-
tively. After expanding the integrand in Eq.~1! around2qa
up to second order, the ordinary integrations over the ini
coordinates are seen to be restricted to the harmonic ra
around2qa so that theu functions can be set to 1. Then, th
integrals effectively describe the stationary real time mot
of the equilibrium well distributionrb(2qa ,2qa). Com-
bining these findings yields

r1~qf ,2qf ,t ![r1,0~qf ,2qf ,t !1r0,1~qf ,2qf ,t !

5 i8F~ t !exp@22uW~qa ,2qa!u/\#

3sinh~qfqa/2da
2!rb~2qa ,2qa!/Z.

~57!

Here rb(2qa ,2qa) includes a sum over multi-instanto
contributions of the imaginary time paths, resulting forT
→0 in rb(2qa ,2qa)/Z5AMva/4p\. Further, F(t)}t
takes into account the phase space contribution from equ
lent fluctuation paths connectingqf via a TP atqa with
2qa . These paths differ only in their ‘‘sojourn times’’ at th
TP qa . To evaluateF we adopt the method outlined in@29#,
to which we also refer for further details, and write

Gt~qa ,2qa!5E
0

t

duGt2u~qa,0!q̇s~0,u!Gu~0,2qa!.

~58!

Since for t@ta the sojourn time is exponentially large, on
can actually sum the intermediate time stepu over the entire
time interval up to negligible corrections. To calculate t
semiclassical propagators in the integrand of Eq.~58! one
exploits the fact that a fluctuation path moving fromq50 to
qa in time t@ta spends almost all the time orbiting in th
vicinity of qa thereby diffusing along the classical stationa
paths~42! with qf&qa toward the TP. Hence, the time de
pendence of the propagators is determined only by
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asymptotic behavior of the fluctuation paths. Then, as
ready derived in the previous paragraph, the actions turn
to be independent of time up to exponentially small corr
tions and their sum gives rise to the action fac
exp@2uW(qa ,2qa)u/\# in Gt(qa ,2qa). For the prefactors one
uses the representation~9!, and exploits the fact tha
q̇s(0,u)AAt2u(qa,0)Au(0,2qa) depends fort@ta on time
and temperature only through exp@2(\b1it)va/2#, while its
dependence on the intermediate time stepu is exponentially
small. In this way, since both exponential factors are alre
accounted for in Eq.~57!, we arrive at

F~ t !5Gt~qa ,2qa!exp@ uW~qa ,2qa!u/\1~\b1 i t !va/2#,

~59!

which leads to

F~ t !5t
4vaqa

A2pda

. ~60!

Combining this result with Eq.~57! we derive the one-TP
contribution to Eq.~54! as

r1~qf ,2qf ,t !5 i tD2 sinh~qaqf /2da
2!/~vaqa! ~61!

where the tunnel splitting is specified in Eq.~41!. Likewise,
contributions from real time paths with more than one
can be calculated where the proper order of TPs mus
taken into account. Eventually, only contributions wi
i 2k21D2k,k51,2,..., survive and the time dependent dens
matrix ~54! for coordinates near the barrier top reads

r~qf ,2qf ,t !5 1
2 c0~qf ,2qf !

2

1 iD sin~Dt !sinh~qaqf /2da
2!/~vaqa!.

~62!

Hence, the initial state~3! develops an imaginary, time de
pendent part from which the tunneling current~5! is gained
as

J~ t !5D sin~Dt ! ~63!

describing coherent tunneling between the wells. This sh
that a systematic semiclassical analysis of the real time
namics of the system also covers low temperature tunne
We note that the tunnel splitting coincides exactly with t
result of the instanton approach@see Eq.~41!# where D is
related to the action of an imaginary time path. Within t
real time description the ‘‘instanton dynamics’’ is replac
by the above-mentioned diffusion along the real axis in
complex coordinate plane.

Before we conclude this section let us briefly sketch h
the crossover from coherent decay to incoherent tunne
occurs within the present formalism as the temperature
raised; details of the calculation will be presented elsewh
For finite temperaturesT.0 the energy of the stationar
paths isuĒ1u5uV(q1)u,uV(qa)u so that the TPs of the fluc
tuation pathsq1,qa are shifted toward the barrier top. Ac
cordingly, V8(q1)Þ0 and the corresponding actions in E
~58! are no longer independent of time. Thus, the time int
val t@ta may eventually exceed the region where the in
l-
ut
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grand gives a contribution so thatF(t)→F f l saturates. We
note that for a system with dissipation, basically the sa
mechanism, namely, an effective action depending on t
via damping induced correlations, may cause incoherent
neling even atT50.

V. ECKART BARRIER

As another instructive example we analyze in the follo
ing the transport across a genuine scattering poten
namely, the so-called Eckart barrier

V~q!5
V0

cosh~q/L0!2 . ~64!

Here,V0 is the barrier height andL0 the typical interaction
range. We drop the conditionV(q50)50 in this section so
that energies are shifted byV0 . In fact, the real time dynam
ics in this potential is much simpler than in the double we
particles steadily injected from a thermal reservoir to the
of the barrier build up a flux across the barrier that is stati
ary for all times after a certain transient time has elaps
Thus, the corresponding quantum dynamics is described
barrier transmission rate for all temperatures. In a semic
sical expansion we use\/A2ML0

2V0 as the small parameter
which demands high and broad barriers.

A. Thermal equilibrium and stationary phase points

The solution of Newton’s equation of motion for the Ec
art barrier in imaginary time reads@30#

q̄0~qf ,s!5L0 arcsinhSAV02Ē

Ē
sin@v~Ē!s2f f #D ,

~65!

where we introduced the energy dependent frequency

v~Ē!5vbA Ē

V0
~66!

with the barrier frequencyvb5A2V0 /ML0
2. EnergyĒ and

phase f f are determined by the boundary conditio
q̄0(qf ,0)52qf and q̄0(qf ,\b)5qf . Accordingly, employ-
ing one of these conditions to fixf f , the energy can be
evaluated from

v~Ē!\b5rp1@11~21!r #f f , ~67!

where for given temperature real solutions exist only fo
finite number of integersr>0. Accordingly, this nonlinear
equation gives the amplitude of the semiclassical path. A
function of temperature the solutions~65! and~67! resemble
those in the inverted double well potential~cf. Sec. IV A!. In
particular, forT,Tc all paths withr 51 again have the sam
energy independent ofqf ,

Ē1[V~q1!5
p2V0

vb
2\2b2 , ~68!
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with amplitudes6q1 and the same frequencyv15v(Ē1).
An important difference from the double well case, howev
is that the amplitudeq1 of the paths here grows without an
limit as T→0, i.e., Ē1→0. Hence, the equilibrium densit
matricesrb(qf ,2qf) differ qualitatively in the deep tunnel
ing regime. While for the double well potential nearT50
contributions from all multi-instanton paths must be summ
up @see Eq.~40!#, here, the density matrix is dominated b
the oscillating paths newly emerging aroundTc5vb\/kBp
for all T,Tc . For further details of the Euclidean semicla
sics we refer to@30#.

Now, for the stationary phase points we obtain

qs~ t !5L0 arcsinhSAV02Ē

Ē
sin@f f2 iv~Ē!t#D ,

qs8~ t !52qs@~21!r 11t#, ~69!

which are connected by the Euclidean pathq̄s(s)5q̄0@s
1 i (21)r 11t#. Starting atqf@2qf # the pathqs(t)@qs8(t)# de-
scribes for large times an almost free motion parallel to
real axis in accordance with the asymptotically vanish
interactionV(q)→0 asq→6`. The energy ofqs(t) is con-
trolled by temperature where qualitatively the two rangesT

.Tc and T<Tc must be distinguished. In the first case,Ē
depends onqf and forqf.0 we find asymptotically, i.e., for
v(Ē)t@1,

qs~qf ,t !'L0 arcsinhF sinh~qf /L0!

2 sin~vb\b/2!
ev~E!tG

2 iL 0S p

2
2

vb\b

2 D , ~70!

so that forT.Tc all stationary paths are restricted to th
strip i (L0/2)@2(p2vb\b),(p2vb\b)# ~cf. Fig. 6!. In the

FIG. 6. Real time paths in the complex plane for the Eck
barrier. Solid lines show orbits forT,Ta , dotted lines orbits for
T.Ta .
,

d

e
g

rangeT,Tc and for end coordinatesqf,q1 the oscillating
Euclidean paths determine the energy independent ofqf as
E5Ē1 @see Eq.~68!# with the frequencyv15v(Ē1). Hence,
in T!Tc all paths starting in the barrier range (qf&L0)
nearly coincide asymptotically~see also Fig. 6! for vbt
@1:

qs~qf ,t !'q11L0 ln@sinh~v1t !#1 iL 0p/2. ~71!

Orbits withqf.L0 also come close toiL 0p/2 but on a larger
time scale, e.g., forqf close toq1@L0 on the scale 1/v1 .
Since Im$qs8%→2iL0p/2 for larget we conclude that the rea
time stationary phase dynamics forT,Tc is restricted to the
strip @2 iL 0p/2,iL 0p/2# in the complex plane~Fig. 6!. To
complete this discussion we address the special caseqf
5q1 andqf50, respectively. In the former case the motio
starts with zero momentum and takes place along the
axis, asymptotically (v1t@1) as

qs~ t,q1!'q11L0v1t. ~72!

In the latter case the orbit can only be defined as the limit
trajectory of qs(t,qf) for qf→0, thus running along the
imaginary axis fromq50 to q5 iL 0p/2 and afterward par-
allel to the real axis.

The complex plane dynamics described depends es
tially on the analytic properties of the potentialV(q). Inter-
estingly, in the case of the Eckart barrier one has for comp
q the periodicity

V~q!5V~q1 iL 0np!, n integer. ~73!

Hence, the complex plane falls into strips@(2n
21)iL 0p/2,(2n11)iL 0p/2#, n integer, parallel to the rea
axis, each of which has identical classical mechanics
corresponding stationary phase pathsqs(qf1 iL 0np,t). As
shown above, forT,Tc the real time dynamics starting from
the real axis att50 reaches asymptotically the boundaries
the stripn50, while in the rangeT.Tc it does not. This has
crucial impact on the semiclassical analysis for low tempe
tures as will be discussed in Sec. V C.

B. Stationary flux for high and moderately low temperatures

The systems starts from an initial state where the ther
equilibrium is restricted to the left of the barrier, thus exten
ing to q→2`. Accordingly, after a certain transient tim
has elapsed the flux across the barrier remains stationary
ever. Since with increasing time the stationary phase po
move away from the barrier top, for large times fluctuatio
of the order ofL0 or larger are needed to shiftqi into the
region Re$qi%<0, thus rendering the Gaussian stationa
phase approximation insufficient. Yet we can use Eq.~17! to
gainJfl as long as the flux becomes stationary on a time sc
within which qs remains smaller thanL0 .

In the rangeT.Tc and forqf near the barrier top one ha
Ē'V0 so thatv(Ē)'vb . Thus, the density matrixr(qf ,
2qf ,t) tends to stationarity on the scale 1/vb while qs(t)
reachesL0 on the much longer time scale ln@V0 /(Ē2V0)#
only. We thus regain within this time window approximate
the parabolic result~29! in the semiclassical limit—largeV0
andL0—where anharmonicities are negligibly small. Corr

t



s

to
rie

ec

io

re
r

ra

o
n
m
ul
at
ee
uc

ex

us

g

ht

he

th
al
ot

-

ti-

ths

ple
tor,

ce it

s

ad
he
ion

a-
ath

c-
ing

the
f

rts

3462 PRE 61JOACHIM ANKERHOLD AND HERMANN GRABERT
spondingly, the rate reads as specified in Eq.~31! with vb

5A2V0 /ML0
2.

For temperaturesT,Tc the transient time range grow
according to 1/v15\b/p, while the upper bound for the
validity of the Gaussian approximation eventually shrinks
1/vb . Hence, while one can no longer use the local bar
dynamics for temperaturesT!Tc , in a region sufficiently
close toTc a rate calculation along the lines described in S
IV C still makes sense. Accordingly, forT&Tc the density
matrix is obtained as in Eq.~46! with the amplitudeq1 de-
rived from Eq.~67! for r 51 as

q15L0 arcsinhSA~vb\b!22p2

p D . ~74!

This way, one gets the rate

G5
vb

4p2Z

A~vb\b!22p2

arcsinh@A~vb\b/p!221#
exp~2bV0!

~75!

for temperatures belowTc but still aboveTc/2. For even
lower temperatures higher order terms in the expans
around the stationary phase pointsqs ,qs8 must be taken into
account. In the following section we show that forT below
Tc/2 the rate is dominated by quantum tunneling which
quires an extended semiclassical analysis. Thus, a highe
der expansion is needed only in the close vicinity ofTc/2
where the changeover from the thermal to the quantum
occurs.

C. Stationary flux for low temperatures

The breakdown of the Gaussian stationary phase appr
mation for lower temperatures indicates also a breakdow
the simple semiclassical approximation to the real ti
propagators for large times. In fact, one needs to caref
analyze the quantum fluctuations around the classical p
to capture tunneling processes. In the following we proc
in the spirit of Sec. IV D and search for relevant phase fl
tuations.

We begin by recalling that in the rangeT!Tc and for
coordinatesqf,q1 the classical mechanics in the compl
plane takes place in strips @(2n21)iL 0p/2,(2n
11)iL 0p/2#, n integer, parallel to the real axis. One th
has families of classical paths~cf. Fig. 6! all with the same
energyĒ1 that start att→2` to the far right on the lines
(2n21)iL 0p/2, run close together with almost vanishin
momentum2ML0v1 toward the barrier top, pass att50 the
coordinatesqf1 inL0p, and then leave again to the far rig
moving close together with momentumML0v1 asymptoti-
cally along the lines (2n11)iL 0p/2. Accordingly, for T
→0 in classical phase space~see Fig. 7! orbits with different
phasesf f , i.e., different qf , but from the same or from
adjacent strips lie arbitrarily close to each other in t
asymptotic range whereuV(q)u→0. The effect of quantum
fluctuations then is to link these paths, which reflects
asymptotically free particle diffusion in the Eckart potenti
In simple semiclassical approximation one has asympt
cally the propagator
r

.
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Gt~q,q8!5S M

2p i\t D
1/2

expS iM
~q2q8!2

2\t D ~76!

so that for fixedq2q8 and long times the transition prob
ability decreases asuGt(q,q8)u2}1/t @cf. Eq. ~51!#. Corre-
spondingly, two different types of fluctuation can be iden
fied: one type of fluctuation connects pathsqs(q8

1 iL 0np,t) and qs(qf81 iL 0np,t) within the same strip,
while the other type of fluctuation switches between pa
qs(qf1 iL 0np,t) and qs„qf81 iL 0(n11)p,t… in adjacent
strips. The first type is already accounted for in the sim
semiclassical approximation to the real time propaga
since these fluctuations never leave the stripn50 and stay in
the close vicinity of the asymptoticqs(qf ,t). In contrast, the
second type is relevant beyond Gaussian semiclassics sin
causes large deviations and allows a pathqs(qf ,t) by subse-
quently diffusing to another strip to reach a pathqs(qf8
1 iL 0np,t) with qf8 far from qf and n large. Interestingly,
this second kind of fluctuation does not exist forT.Tc
where asymptotically there is always a gapivb\b between
paths in adjacent strips~see Fig. 6!.

As an example, let us consider a trajectoryqs(qf ,t) with
qf close to the barrier top forT!Tc and timest@1/v1
@1/vb . In this limit the orbit runs forvbt@1 along the
boundaryiL 0p/2 of the stripn50, where fluctuations of the
second class bridge the tiny gap to an orbitqs(qf81 iL 0p,t)
with a differentqf8 in the stripn51. This trajectory passe
qf81 iL 0p, and exploiting the periodicity ofV(q) the corre-
sponding change in actionW(qf ,qf8) is shown to read as in
Eq. ~52!. Obviously, the described fluctuations always le
from an outgoing to an ingoing orbit, thereby increasing t
strip number, which in turn requires a momentum fluctuat
of order 2uq̇s(t)u52ML0v1 . Estimating typical momentum
fluctuations as\/L0 one rederives from\/L0@ML0v1 the
condition T!Tc so that at low temperatures these fluctu
tions will indeed occur. By the same procedure the p
qs(qf81 iL 0p,t) can be linked to a pathqs(qf91 iL 02p,t),
and so forth. As in case of the double well potential, a ‘‘flu
tuation path’’ is characterized by its sequence of cross
points q(k)1 iL 0kp, k50,1,2, . . . ,n@q(n)5qf #, with the
lines iL 0kp, i.e., the copies of the real axis in the stripsk.
Accordingly, for very long timest@1/v1 the point q(n)

FIG. 7. Phase space orbits of complex real time paths in
Eckart barrier potential atT!Tc . In the left picture the real part o
the orbits is shown for trajectories starting withqf.0 near the
barrier top. In the right picture the corresponding imaginary pa
are depicted; the dotted line separates the stripsn50 andn51.
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1iL0np moves with increasingn along the positive imagi-
nary axis while simultaneouslyq(n) can slide down the rea
axis and away from the barrier top to reach the proximity
q1 . From close toq1 relevant fluctuation paths traverseq1 as
a turning point—q1 is a branch point for the momentum—
and return via the described scenario toqf in the strip k
50, but crossing the linesiL 0kp with opposite direction of
momentum as on the way forward. The total change in ac
is imaginary and given by W(qf ,qf)5W(q1 ,qf)
52W(q1 ,qf),n arbitrary but large, where forqf close to the
top

uW~q1 ,qf !u5E
qf

q1
dq$2M @V~q!2V~q1!#%1/2

5
pV0

vb
S 12

p

vb\b D2vbML0qf . ~77!

In a similar way, the sequence ofq(n) of a fluctuation path
starting atqf can move directly toward the barrier top, di
fuse across the barrier to enter the left half-plane of the c
plex plane, and end up in the asymptotic region Re$q%→
2`. Since in leading order the semiclassical propagator
asymptotically to match onto the free propagator~76!, a TP
may occur only if iW(qf ,6q1),0. Hence, what we dis
cussed in Sec. IV D@see the paragraph above Eq.~54!# can
be transferred directly to the situation here and the den
matrix can be cast into the same form as in Eq.~54!. In a
notable difference from the double well potential, howev
the TPq1 here is not an isolated extremum of the potent
meaning that each TP—for Euclidean and real time fluct
tion paths as well—is not related to an additional phase
tor for equivalent paths.

After having elucidated the general structure of the se
classical density matrix we now turn to the explicit calcu
tion of the sum ~54! and begin with the termr0,0(qf ,
2qf ,t). This matrix element follows by the same argume
as given in Sec. IV D. Since the equilibrium density mat
for the Eckart barrier is dominated by the oscillating pa
newly emerging aroundTc for all lower temperatures, al
further contributions from Euclidian trajectories withrÞ1 in
Eq. ~67! are negligible. Accordingly, we find for coordinate
around the barrier top

r0,0~qf ,2qf !

5
1

2
lim

T!Tc

1

Z
rb~qf ,2qf !

5
1

ZL0
S pV0

vb
2\2b@~vb\b!2~12qf

2/L0
2!2p2# D

1/2

3expF2
pV0

vb\ S 22
p

vb\b D G . ~78!

Note that in contrast to bounded systems the above den
matrix remains temperature dependent even forT!Tc .

To next order real time paths withn51, n850 and n
50, n851, respectively, contribute@cf. Figs. 5~c,d!#. For t
@1/v1 a relevant real time fluctuation path withn51 start-
ing atqf moves via a TP atq11 iL 0n8p,n8 large, to the left
f

n
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ty

,
l,
-

c-

i-
-

s

s

ity

half-plane where it eventually crosses2q11 iL 0np,n large,
to run along the lineiL 0np and reachqi1 iL 0np in the far
left. For the segment of the fluctuation path fromqf via a
TP to 2q11 iL 0np, the corresponding action factor i
exp@23uW(q1,0)u/\1vbML0qf /\#. Due to the periodicity
~73! of the potential, the segment from2q11 iL 0np to qi
1 iL 0np,qi,2q1 , can just be treated as the correspond
one along the real axis; for very large timesv1t@1, i.e.,
uqi u@q1 according to Eq.~72!, we then get the action facto
exp@2iMq2 /2\t#. Hence, the corresponding relevant re
time propagator reads

Gt~qf ,qi !52 iAA~qf ,qi !

3expS 2
3uW~q1,0!u

\
1

vbML0qf

\
1 iM

qi
2

2\t D .

~79!

Similarly, the propagator from2qf directly toqi81 iL 0np is
gained. The crucial point is now that for the integral in E
~1! there are no longer isolated stationary phase points
rather allqi ,qi8 on the lineiL 0np and to the far left of the
barrier top make the integrand for very large times stati
ary. The ordinary integrals in Eq.~1! can thus be seen a
sums over stationary phase pointsqi ,qi8 whereby their dis-
tance is weighted by the asymptotic thermal distribution, i
in leading order the free particle equilibrium density matr

rb~q,q8!5S M

2p\2b D 1/2

expS 2
M ~q2q8!2

2\2b D . ~80!

Accordingly, for T→0 one hasrb(qi ,qi8)→d(qi2qi8) so
that contributions fromqiÞqi8 are caused by thermal fluc
tuations at elevated temperatures. Further, for largeqi ,qi8
and large times the prefactorsA(qf ,qi) and A8(2qf ,qi8),
respectively, are independent ofqi ,qi8 , thus allowing us to
carry out theqi ,qi8 integrals over the exponentials only
Then, using2q1 as an upper bound for the asymptotic c
ordinate range it turns out that forv1t@1 the result for the
integrals in leading order isp\t/M . Now, combining all
factors we finally obtain the time independent density

r1~qf ,2qf !5 lim
v1@1

r1,0~qf ,2qf ,t !1r0,1~qf ,2qf ,t !

5
i

ZL0
S 4pV0

\vb~vb\b!3D 1/2

3sinh~2vbML0qf /\!e24uW~q1,0!u/\, ~81!

whereuW(q1,0)u follows from Eq.~77!. Employing the same
procedure, contributions in the sum~54! from real time paths
with more than one TP can be derived; however, they c
tain additional action factors and are thus exponentia
small compared tor1 . Hence, the stationary semiclassic
density matrix for low temperatures and very large times
found as

rfl~qf ,2qf !5
1

2Z
rb~qf ,2qf !1r1~qf ,2qf ! ~82!
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with rb as specified in Eq.~78!. Finally, from Eq. ~5! we
gain the thermal tunneling rate

G5
1

Z F 4pV0vb

\~vb\b!3
G1/2

e24uW~q1,0!u/\. ~83!

This simple formula is applicable as long asq1.L0 , a tem-
perature range which can be estimated byT below Tc/2, or
equivalentlyvb\b.2p. To be precise, there is also a low
bound for the temperature. That is, forT→0 any semiclas-
sics in the Eckart barrier breaks down due to the fact t
then tunneling takes place in the low energy range near
base of the barrier where the wavelength of a wave func
tends to exceed the width of the barrier. From the kno
exact transition probability@see, e.g.,@30## one derives that
this scenario becomes relevant forvb\b@2p4(V0 /\vb),
corresponding in the semiclassical limitV0 /\vb@1 to ex-
tremely low temperatures. In the broad temperature ra
between these bounds, i.e., 2p,vb\b&2p4(V0 /\vb), the
above rate expression describes the decay rate with rem
able accuracy when compared to the exact result, even
moderate barrier heights~see Fig. 8!. Table I presents a nu
merical comparison with results from other approaches.
temperatures aboveTc/2 the real time semiclassical rate
slightly too small and coincides forT.Tc with the well-
known ‘‘unified’’ semiclassical rate formula gained from th
thermal average over the transmissionT(E)51/$1
1exp@S(E)/\#%, where S(E) is the bounce action forT
,Tc/2. The small deviations from the exact rate are due
the fact that in the simple version of the theory presen
here anharmonicities of the potential are neglected foT
.Tc and taken into account only in leading order inTc.T
.Tc/2. A perturbative expansion in an anharmonicity p
rameter allows for a systematic improvement. For the sa
reason, the temperature region aroundTc/2 is not well de-
scribed. In the deep tunneling regionT,Tc/2, which is no-
toriously problematic for real time rate theories, our theo
performs excellently. In fact, the low temperature formu
~83! turns out to be identical to the result derived within t
instanton/bounce approach@see, e.g.,@31##. The bounce is an
oscillating Euclide an orbit, periodic in phase space, wh

FIG. 8. Transmission factorP as a function of inverse tempera
ture for an Eckart barrier witha512,a52pV0 /\vb . P is defined
by P5G/Gcl with Gcl the classical rate, i.e., the high temperatu
limit to Eq. ~31!. The solid line is the exact result. In the left pictu
the dotted line shows the parabolic result Eq.~31!, the dashed line
represents Eq.~75!, and the arrow indicates the inverse temperat
corresponding toTc . In the right picture the dashed line depicts t
result Eq.~83! and the arrow refers toTc/2.
t
e
n
n

e

rk-
or

or

o
d

-
e

y

h

connectsqf50 with itself, thus emerging as a solution of E
~67! at T5Tc/2(r 52). While in imaginary time methods th
bounce trajectory describes barrier penetration, here, ef
tively the same tunneling rate arises from fluctuations aro
real time paths, the energy of which is fixed by oscillati
Euclidean orbits, closed in phase space, emerging atTc(r
51). These latter minimal action paths solely determine
semiclassical thermal equilibrium for lower temperaturesT
,Tc , thus establishing within a semiclassical real time a
proach the relation between the thermal density matrix
the thermal tunneling rate, long an open question in ther
rate theory.

This represents substantial progress when compared
other attempts. While Pollak’s new quantum transition st
theory ~QTST! @11# is based on a numerically exact evalu
tion of the thermal flux, it suffers from a simple semiclassic
approximation to the real time propagators. In the associa
full semiclassical calculation by Pollak and Eckhardt@32#
only half of the bounce action appears in the exponen
factor for temperatures belowTc/2 and the corresponding
tunneling rates are too large~see also Table I!. The centroid
method @10# gives the correct action factor, but its sem
empirical factorization of thermal and dynamical contrib
tions leads to a prefactor that is too small for lower tempe
tures. Finally, from semiclassical real time calculations
the Eckart barrier based on the simple semiclassical pro
gator @17,18#, tunneling probabilities in the deep tunnelin
regime cannot be properly extracted since they dep
strongly on the initial state.

VI. CONCLUSIONS

We have developed a unified semiclassical theory t
describes the real time dynamics of quantum statistical s
tems for all temperatures including coherent and incohe
processes. Starting from the exact nonequilibrium dynam

e

TABLE I. Transmission factorP5G/Gcl for the symmetric Eck-
art barrier.Gcl is the classical rate and parameters are the same
Fig. 8.

vb\b Prsemi
a Puni

b PQTST
c PSQTST

d Pex
e

1.5 1.10 1.10 1.13 1.13 1.13
3 1.50 1.50 1.54 1.52 1.52
5 2.98 3.84 3.18 3.11
6 3.86 8.92 5.74 2.2 5.2
8 21.99 17.97 29.3 11.9 21.8
10 136.2 132.2 248 149 162
12 1613 1606 3058 3006 1970
16 6.033105 6.033105 2.563106 7.413105

18 1.543107 1.543107 9.13107 1.883107

aPrsemi is the transmission factor as derived by the real time se
classical approach presented in this paper.
bPuni is the transmission factor of the ‘‘unified’’ semiclassical a
proach.
cPQTST is the transmission factor according to the simplest vers
of Pollak’s QTST, from Ref.@32#.
dPSQTSTis the transmission factor according to the full semiclassi
version of Pollak’s QTST, from Ref.@32#.
ePex is the exact transmission factor.
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the approximate density matrix is obtained by employ
semiclassical propagators in real and imaginary time co
bined with a stationary phase evaluation. Accordingly,
relevant classical mechanics takes place in the complex
ordinate plane, where the energy of classical real time tra
tories is fixed by the Euclidean orbits determining the eq
librium distribution. Consequently, real time paths follo
from solving an initial value rather than a boundary val
problem. While this procedure can be used to study the
namics for a wide class of systems and initial conditio
here we concentrated on the flux across a double well po
tial and an Eckart barrier. Then, for high to moderate te
peratures the Gaussian approximation suffices to obta
stationary flux. In the tunneling domain however, this a
proximation fails and the complex plane dynamics allows
to identify the dominant quantum fluctuations in the real tim
propagators. These are zero-mode-like phase fluctuat
which give rise to a diffusion along the scaffold of classic
orbits. Quantum tunneling in the real time domain can th
be interpreted semiclassically as a diffusion process o
certain family on classical real time paths. By systematica
incorporating the phase fluctuations, we managed to de
coherent tunneling dynamics within a real time semiclass
formalism.

Regarding incoherent decay in the deep tunneling regi
the theory revealed the connection between thermal equ
rium and the tunneling rate upon which thermodynamic r
formulas are based. In the semiclassical limit, flux across
barrier and equilibrium are linked via the intimate relati
between Euclidean and real time paths in the complex p
e
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-
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ns
l
s
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e,
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e
e

e

mechanics. However, the theory not only reproduces the
sults of various other semiclassical thermal rate theories
higher temperatures, but also covers with no further assu
tions the low temperature regime where so far other real t
methods have failed.

Several questions could not be analyzed in detail in t
article. There is first the temperature range aroundTc/2
where high and low temperature semiclassics approxima
match; we briefly sketched corresponding improvemen
Second, we only touched in passing the explicit real ti
dynamics in the transient time domain, where for incoher
processes the relaxation to a stationary flux occurs. Th
other initial preparations, e.g., to gain correlation functio
were beyond the scope of this paper.

Moreover, with the appropriate formalism at hand furth
extensions are possible. While the dynamics of dissipa
systems has already been studied in the high to mode
temperature range@21,26#, the low temperature tunneling re
gime is now in principle open for investigations. Of course
crucial point for all further applications is to develop an a
propriate numerical algorithm to mimic the ‘‘diffusion’’ in
the complex plane. We hope to make progress in this dir
tion in the near future.
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